现有的机器翻译模型通常在词粒度切分的数据集上进行训练,然而不同的切分粒度蕴含着不同的语法、语义的特征和信息,仅考虑词粒度将制约神经机器翻译系统的高效训练.这对于藏语相关翻译因其语言特点而显得尤为突出.为此提出针对藏汉双向机器翻译的具有音节、词语以及音词融合的多粒度训练方法,并基于现有的注意力机制神经机器翻译框架,在解码器中融入自注意力机制以捕获更多的目标端信息,提出了一种新的神经机器翻译模型.在CWM T2018藏汉双语数据集上的实验结果表明,多粒度训练方法的翻译效果明显优于其余切分粒度的基线系统,同时解码器中引入自注意力机制的神经机器翻译模型能够显著提升翻译效果.此外在W M T 2017德英双语数据集上的实验结果进一步证明了该方法在其他语种方向上的适用性.