基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
鞋印是刑事案件中出现率最高的痕迹物证[1],通过检索现场鞋印进而确定鞋样能够获得有关嫌疑人身份和犯罪特点的重要信息.近年来研究人员逐渐把深度学习的相关方法应用到鞋印检索上,但目前大多数基于深度学习的鞋印检索算法都直接使用预训练的卷积神经网络提取特征,并未微调再训练,也没有设计并训练新的网络模型.提出一种基于微调VGG-16的现场鞋印检索算法.首先建立一个432类共2 827幅图片的鞋印数据集,并进一步增广到228 987幅图像.然后使用该数据集微调ILSVRC数据集预训练的VGG-16模型,并将该模型作为鞋印特征提取器.实验结果显示,与使用预训练模型相比本文方法的检索精度有了明显提高,在200幅嫌疑鞋印和5 000幅样本鞋印图像构成的测试数据集上top10的正确识别率达75.5%.
推荐文章
基于改进VGG-16和朴素贝叶斯的手写数字识别
手写数字识别
VGG-16网络
朴素贝叶斯分类器
图像预处理
特征提取
数据降维
基于改进的VGG-16卷积神经网络的肺结节检测
肺结节
VGG-16
极限学习机
卷积神经网络
基于改进VGG-16和朴素贝叶斯的手写数字识别
手写数字识别
VGG-16网络
朴素贝叶斯分类器
图像预处理
特征提取
数据降维
基于VGG-16卷积神经网络的水稻害虫智能识别研究
水稻
害虫
智能识别
VGG-16
卷积神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于微调VGG-16的现场鞋印检索算法
来源期刊 中国人民公安大学学报(自然科学版) 学科 政治法律
关键词 卷积神经网络 VGG-16 预训练模型 微调 鞋印检索
年,卷(期) 2020,(3) 所属期刊栏目 刑事技术
研究方向 页码范围 22-29
页数 8页 分类号 D918.91
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 唐云祁 23 61 4.0 7.0
2 史文韬 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (31)
共引文献  (5)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1912(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(5)
  • 参考文献(0)
  • 二级参考文献(5)
2016(7)
  • 参考文献(3)
  • 二级参考文献(4)
2017(7)
  • 参考文献(4)
  • 二级参考文献(3)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
VGG-16
预训练模型
微调
鞋印检索
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国人民公安大学学报(自然科学版)
季刊
1007-1784
11-3933/N
16开
北京市西城区木樨地南里
1996
chi
出版文献量(篇)
1994
总下载数(次)
6
总被引数(次)
8979
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导