基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高车牌识别的精确度,提出一种萤火虫反向传播(back propagation,BP)神经网络车牌识别算法.首先,采用原始图像的色相饱和度(hue saturation value,HSV)模式定位车牌并切割出字符,再提取字符的局部二值特征和像素统计特征作为BP神经网络的输入;然后,利用萤火虫算法优化BP神经网络的初始权值和阈值训练BP神经网络;最后,对萤火虫BP神经网络与原始BP神经网络算法进行对比分析.结果表明,萤火虫BP神经网络算法对字符的识别精度高于原始BP神经网络,该算法可用于车牌识别.
推荐文章
基于萤火虫神经网络的轴承性能退化程度评估
滚动轴承
性能退化程度评估
BP神经网络
萤火虫优化算法
萤火虫优化神经网络的体育成绩预测模型
萤火虫优化算法
神经网络
体育成绩
预测模型
改进的萤火虫算法优化BP神经网络及应用
自适应步长
萤火虫算法
BP神经网络
突防效能
评估
优化
基于改进萤火虫优化算法的BP神经网络目标群威胁判断
改进萤火虫优化算法
BP神经网络
目标群威胁判断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于萤火虫BP神经网络的车牌识别算法
来源期刊 扬州大学学报(自然科学版) 学科 工学
关键词 萤火虫算法 BP神经网络 车牌识别 特征提取
年,卷(期) 2020,(1) 所属期刊栏目
研究方向 页码范围 44-48
页数 5页 分类号 TP391.4
字数 语种 中文
DOI 10.19411/j.1007-824x.2020.01.009
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 赵环宇 9 29 3.0 5.0
2 华荣 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (58)
共引文献  (20)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1965(1)
  • 参考文献(0)
  • 二级参考文献(1)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(8)
  • 参考文献(0)
  • 二级参考文献(8)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(3)
  • 参考文献(1)
  • 二级参考文献(2)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(4)
  • 参考文献(2)
  • 二级参考文献(2)
2017(6)
  • 参考文献(1)
  • 二级参考文献(5)
2018(5)
  • 参考文献(2)
  • 二级参考文献(3)
2019(4)
  • 参考文献(4)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
萤火虫算法
BP神经网络
车牌识别
特征提取
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
扬州大学学报(自然科学版)
季刊
1007-824X
32-1472/N
大16开
江苏省扬州市大学南路88号
28-48
1974
chi
出版文献量(篇)
1577
总下载数(次)
2
总被引数(次)
8111
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导