基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对弱光照条件下交通标志易发生漏检和定位不准的问题,本文提出了增强YOLOv3(You only look once)检测算法,一种实时自适应图像增强与优化YOLOv3网络结合的交通标志检测与识别方法.首先构建了大型复杂光照中国交通标志数据集;然后针对复杂的弱光照图像提出自适应增强算法,通过调整图像亮度和对比度强化交通标志与背景之间的差异;最后采用YOLOv3网络框架检测交通标志.为了降低先验锚点框设置精度以及图像中背景与前景比例严重失衡对检测精度造成的影响,优化了先验锚点框聚类算法和网络的损失函数.对比实验结果表明,在实时性大致相当的情况下,本文提出的增强YOLOv3检测算法较标准YOLOv3算法对交通标志有更高的回归精度和置信度,召回率和准确率分别提高0.96% 和0.48%.
推荐文章
自然场景下交通标志的自动识别算法
Adaboost算法
SVM算法
交通标志识别
智能汽车
基于高稳定SURF特征的交通标志识别
交通标志
目标识别
SURF特征
稳定性
权值计分策略
自然场景下的交通标志识别系统
智能交通
交通标志识别系统
绿色减除分割算法
Gist-RGB特征
极限学习机
局部感受野
变化光照条件下的交通标志快速鲁棒检测
交通标志检测
直方图反投影
最大稳定极值区域(MSER)
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 弱光照条件下交通标志检测与识别
来源期刊 工程科学学报 学科 工学
关键词 交通标志检测 弱光照 自适应图像增强 YOLOv3 深度学习
年,卷(期) 2020,(8) 所属期刊栏目
研究方向 页码范围 1074-1084
页数 11页 分类号 TP391.4
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘立 北京科技大学机械工程学院 91 372 10.0 14.0
2 孟宇 北京科技大学机械工程学院 36 191 8.0 12.0
3 赵坤 北京科技大学机械工程学院 5 22 3.0 4.0
4 孙若灿 北京科技大学机械工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (6)
共引文献  (17)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(4)
  • 参考文献(4)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(3)
  • 参考文献(2)
  • 二级参考文献(1)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
交通标志检测
弱光照
自适应图像增强
YOLOv3
深度学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
工程科学学报
月刊
2095-9389
10-1297/TF
大16开
北京海淀区学院路30号
1955
chi
出版文献量(篇)
4988
总下载数(次)
18
总被引数(次)
47371
论文1v1指导