基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着深度学习的发展,方面级情感分类已经在单领域和单一语言中取得了大量的研究成果,但是在多领域的研究还有提升的空间.通过对近年来文本方面级情感分类方法进行归纳总结,介绍了情感分类的具体应用场景,整理了方面级情感分类常用的数据集,并对方面级情感分类的发展进行了总结与展望,提出未来可在以下领域开展深入研究:1)探索基于图神经网络的方法,弥补深度学习方法存在的局限性;2)学习融合多模态数据,丰富单一文本的情感信息;3)开展更多针对多语言文本和低资源语言的研究.
推荐文章
基于复杂句式短文本情感分类研究
文本信息处理
情感分析
复杂句式
word2vec
情感分类模型
SVM
结合情感词网的中文短文本情感分类
同义词
情感词网
情感分类
短文本
中文文本情感分析研究综述
信息处理
中文文本
情感分析
信息抽取
情感识别
对抗长短时记忆网络的跨语言 文本情感分类方法
文本情感
跨语言
对抗
长短时记忆网络
共享特征
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 文本方面级情感分类方法综述
来源期刊 河北科技大学学报 学科 工学
关键词 自然语言处理 情感分类 方面级别 文本分类 深度学习 图神经网络 图卷积网络
年,卷(期) 2020,(6) 所属期刊栏目 机械、电子与信息科学
研究方向 页码范围 518-527
页数 10页 分类号 TP311.13
字数 语种 中文
DOI 10.7535/hbkd.2020yx06006
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张妍 23 154 7.0 11.0
2 许云峰 30 197 8.0 13.0
3 李胜旺 11 43 4.0 6.0
4 杨艺 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (78)
共引文献  (43)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1952(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(9)
  • 参考文献(0)
  • 二级参考文献(9)
2014(7)
  • 参考文献(0)
  • 二级参考文献(7)
2015(7)
  • 参考文献(0)
  • 二级参考文献(7)
2016(12)
  • 参考文献(0)
  • 二级参考文献(12)
2017(17)
  • 参考文献(2)
  • 二级参考文献(15)
2018(8)
  • 参考文献(3)
  • 二级参考文献(5)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
自然语言处理
情感分类
方面级别
文本分类
深度学习
图神经网络
图卷积网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
河北科技大学学报
双月刊
1008-1542
13-1225/TS
大16开
河北省石家庄市裕华东路70号
1980
chi
出版文献量(篇)
2212
总下载数(次)
6
总被引数(次)
14739
论文1v1指导