基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
将深度学习的图像识别应用到工业生产中是一个重要的应用方向.相比传统图像处理,深度学习在图像识别中具有高识别率、抗干扰性强等特点.首先采用小波变换对图像去噪、归一化,然后利用多层卷积对图像进行特征提取并采用全连接层和softmax分类器进行分类实现图像识别.在铝厂工业自动浇注过程中,对已经浇注完成和未完成的图像进行识别、解决传统图像处理在工业生产中多干扰、亮度不足的情况下难以识别的问题.实验结果表明,采用小波变换与深度学习融合对图像进行识别的识别率可达到91.88%,基本能满足铝厂工业生产的需要.
推荐文章
基于深度学习的图像识别技术研究综述
图像识别
CNN
R-CNN
SPP-Net
FastR-CNN
基于深度学习的肺部肿瘤图像识别方法
样本扩充
迁移学习
深度学习
归一预处理
医学图像识别
基于图像识别的钻头自动跟踪算法
图像识别
钻头
自动跟踪
卡尔曼滤波
基于Hadoop平台的图像识别
字符识别
Hadoop平台
图像识别
数据交换时间
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的铝厂工业自动浇筑中的图像识别
来源期刊 湖北大学学报(自然科学版) 学科 工学
关键词 工业生产 图像识别 深度学习 小波变换
年,卷(期) 2020,(3) 所属期刊栏目 计算机与信息工程
研究方向 页码范围 320-324
页数 5页 分类号 TP131.4
字数 3519字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 胡小龙 中南大学计算机学院 46 337 11.0 16.0
2 易佳明 中南大学计算机学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (122)
共引文献  (83)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1972(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(8)
  • 参考文献(0)
  • 二级参考文献(8)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(9)
  • 参考文献(2)
  • 二级参考文献(7)
2015(17)
  • 参考文献(1)
  • 二级参考文献(16)
2016(13)
  • 参考文献(0)
  • 二级参考文献(13)
2017(22)
  • 参考文献(2)
  • 二级参考文献(20)
2018(24)
  • 参考文献(3)
  • 二级参考文献(21)
2019(12)
  • 参考文献(5)
  • 二级参考文献(7)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
工业生产
图像识别
深度学习
小波变换
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
湖北大学学报(自然科学版)
双月刊
1000-2375
42-1212/N
大16开
武汉市武昌区友谊大道368号
38-45
1975
chi
出版文献量(篇)
2481
总下载数(次)
3
总被引数(次)
13467
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导