钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
任务中心
登录
文献导航
学科分类
>
综合
工业技术
科教文艺
医药卫生
基础科学
经济财经
社会科学
农业科学
哲学政法
社会科学II
哲学与人文科学
社会科学I
经济与管理科学
工程科技I
工程科技II
医药卫生科技
信息科技
农业科技
数据库索引
>
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
默认
篇关摘
篇名
关键词
摘要
全文
作者
作者单位
基金
分类号
搜索文章
搜索思路
钛学术文献服务平台
\
学术期刊
\
工业技术期刊
\
一般工业技术期刊
\
中国图象图形学报期刊
\
多尺度深度特征融合的变化检测
多尺度深度特征融合的变化检测
作者:
周末
樊玮
黄睿
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取
变化检测
特征融合
多尺度
孪生网络
深度学习
摘要:
目的 图像的变化检测是视觉领域的一个重要问题,传统的变化检测对光照变化、相机位姿差异过于敏感,使得在真实场景中检测结果较差.鉴于卷积神经网络(convolutional neural networks,CNN)可以提取图像中的深度语义特征,提出一种基于多尺度深度特征融合的变化检测模型,通过提取并融合图像的高级语义特征来克服检测噪音.方法 使用VGG(visual geometry group) 16作为网络的基本模型,采用孪生网络结构,分别从参考图像和查询图像中提取不同网络层的深度特征.将两幅图像对应网络层的深度特征拼接后送入一个编码层,通过编码层逐步将高层与低层网络特征进行多尺度融合,充分结合高层的语义和低层的纹理特征,检测出准确的变化区域.使用卷积层对每一个编码层的特征进行运算产生对应尺度的预测结果.将不同尺度的预测结果融合得到进一步细化的检测结果.结果 与SC_SOBS(SC-self-organizing background subtraction)、SuBSENSE(self-balanced sensitivity segmenter)、FGCD(fine-grained change detection)和全卷积网络(fully convolutional network,FCN)4种检测方法进行对比.与性能第2的模型FCN相比,本文方法在VL_CMU_CD(visual localization of Carnegie Mellon University forchange detection)数据集中,综合评价指标F1值和精度值分别提高了12.2%和24.4%;在PCD(panoramic changedetection)数据集中,F1值和精度值分别提高了2.1%和17.7%;在CDnet(change detection net)数据集中,F1值和精度值分别提高了8.5%和5.8%.结论 本文提出的基于多尺度深度特征融合的变化检测方法,利用卷积神经网络的不同网络层特征,有效克服了光照和相机位姿差异,在不同数据集上均能得到较为鲁棒的变化检测结果.
暂无资源
收藏
引用
分享
推荐文章
一种基于小波变换的SAR图像多尺度融合变化检测方法
SAR图像
变化检测
小波变换
多尺度融合
多光谱图像水域变化检测方法研究
变化检测
BP神经网络
多光谱图像
特征提取
面向对象特征融合的高分辨率遥感图像变化检测方法
面向对象
图像分割
尺度
光谱特征
纹理特征
形状特征
基于特征融合的多尺度窗口产品外观检测方法
机器视觉
质量检测
特征融合
多尺度滑动窗口
支持向量机
内容分析
文献信息
引文网络
相关学者/机构
相关基金
期刊文献
内容分析
关键词云
关键词热度
相关文献总数
(/次)
(/年)
文献信息
篇名
多尺度深度特征融合的变化检测
来源期刊
中国图象图形学报
学科
工学
关键词
变化检测
特征融合
多尺度
孪生网络
深度学习
年,卷(期)
2020,(4)
所属期刊栏目
图像分析和识别
研究方向
页码范围
669-678
页数
10页
分类号
TP391
字数
5059字
语种
中文
DOI
五维指标
作者信息
序号
姓名
单位
发文数
被引次数
H指数
G指数
1
樊玮
中国民航大学计算机科学与技术学院
59
368
9.0
16.0
2
黄睿
中国民航大学计算机科学与技术学院
5
0
0.0
0.0
3
周末
中国民航大学计算机科学与技术学院
1
0
0.0
0.0
传播情况
被引次数趋势
(/次)
(/年)
引文网络
引文网络
二级参考文献
(23)
共引文献
(22)
参考文献
(11)
节点文献
引证文献
(0)
同被引文献
(0)
二级引证文献
(0)
1981(1)
参考文献(0)
二级参考文献(1)
1996(1)
参考文献(0)
二级参考文献(1)
1997(1)
参考文献(0)
二级参考文献(1)
1998(1)
参考文献(1)
二级参考文献(0)
2000(2)
参考文献(0)
二级参考文献(2)
2001(1)
参考文献(0)
二级参考文献(1)
2003(1)
参考文献(0)
二级参考文献(1)
2004(2)
参考文献(1)
二级参考文献(1)
2006(2)
参考文献(0)
二级参考文献(2)
2007(2)
参考文献(1)
二级参考文献(1)
2008(3)
参考文献(1)
二级参考文献(2)
2009(2)
参考文献(0)
二级参考文献(2)
2010(4)
参考文献(0)
二级参考文献(4)
2011(2)
参考文献(0)
二级参考文献(2)
2012(2)
参考文献(0)
二级参考文献(2)
2013(1)
参考文献(1)
二级参考文献(0)
2015(1)
参考文献(1)
二级参考文献(0)
2017(3)
参考文献(3)
二级参考文献(0)
2018(2)
参考文献(2)
二级参考文献(0)
2020(0)
参考文献(0)
二级参考文献(0)
引证文献(0)
二级引证文献(0)
研究主题发展历程
节点文献
变化检测
特征融合
多尺度
孪生网络
深度学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
主办单位:
中国科学院遥感与数字地球研究所
中国图象图形学学会
北京应用物理与计算数学研究所
出版周期:
月刊
ISSN:
1006-8961
CN:
11-3758/TB
开本:
大16开
出版地:
北京9718信箱
邮发代号:
82-831
创刊时间:
1996
语种:
chi
出版文献量(篇)
5906
总下载数(次)
17
期刊文献
相关文献
1.
一种基于小波变换的SAR图像多尺度融合变化检测方法
2.
多光谱图像水域变化检测方法研究
3.
面向对象特征融合的高分辨率遥感图像变化检测方法
4.
基于特征融合的多尺度窗口产品外观检测方法
5.
基于多尺度融合的对象级变化检测新方法
6.
基于Xception模型的遥感影像场景变化检测
7.
基于多特征融合的遥感影像变化检测算法
8.
引入多尺度特征图融合的人脸关键点检测网络
9.
利用慢特征分析进行多尺度融合的 高分辨率影像变化检测
10.
面向对象多特征融合的水域岸线目标变化检测
11.
采用独立阈值的遥感影像变化检测方法
12.
基于多尺度分割和决策树算法的山区遥感影像变化检测方法——以四川攀西地区为例
13.
运用多尺度图像纹理进行城市扩展变化检测
14.
基于遥感影像的变化检测技术
15.
多特征融合的尺度自适应KCF人脸跟踪
推荐文献
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
任务中心
登录
根据相关规定,获取原文需跳转至原文服务方进行注册认证身份信息
完成下面三个步骤操作后即可获取文献,阅读后请
点击下方页面【继续获取】按钮
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
原文合作方
继续获取
获取文献流程
1.访问原文合作方请等待几秒系统会自动跳转至登录页,首次访问请先注册账号,填写基本信息后,点击【注册】
2.注册后进行实名认证,实名认证成功后点击【返回】
3.检查邮箱地址是否正确,若错误或未填写请填写正确邮箱地址,点击【确认支付】完成获取,文献将在1小时内发送至您的邮箱
*若已注册过原文合作方账号的用户,可跳过上述操作,直接登录后获取原文即可
点击
【获取原文】
按钮,跳转至合作网站。
首次获取需要在合作网站
进行注册。
注册并实名认证,认证后点击
【返回】按钮。
确认邮箱信息,点击
【确认支付】
, 订单将在一小时内发送至您的邮箱。
*
若已经注册过合作网站账号,请忽略第二、三步,直接登录即可。
期刊分类
期刊(年)
期刊(期)
期刊推荐
一般工业技术
交通运输
军事科技
冶金工业
动力工程
化学工业
原子能技术
大学学报
建筑科学
无线电电子学与电信技术
机械与仪表工业
水利工程
环境科学与安全科学
电工技术
石油与天然气工业
矿业工程
自动化技术与计算机技术
航空航天
轻工业与手工业
金属学与金属工艺
中国图象图形学报2022
中国图象图形学报2021
中国图象图形学报2020
中国图象图形学报2019
中国图象图形学报2018
中国图象图形学报2017
中国图象图形学报2016
中国图象图形学报2015
中国图象图形学报2014
中国图象图形学报2013
中国图象图形学报2012
中国图象图形学报2011
中国图象图形学报2010
中国图象图形学报2009
中国图象图形学报2008
中国图象图形学报2007
中国图象图形学报2006
中国图象图形学报2005
中国图象图形学报2004
中国图象图形学报2003
中国图象图形学报2002
中国图象图形学报2001
中国图象图形学报2000
中国图象图形学报1999
中国图象图形学报1998
中国图象图形学报2020年第9期
中国图象图形学报2020年第8期
中国图象图形学报2020年第7期
中国图象图形学报2020年第6期
中国图象图形学报2020年第5期
中国图象图形学报2020年第4期
中国图象图形学报2020年第3期
中国图象图形学报2020年第2期
中国图象图形学报2020年第12期
中国图象图形学报2020年第11期
中国图象图形学报2020年第10期
中国图象图形学报2020年第1期
关于我们
用户协议
隐私政策
知识产权保护
期刊导航
免费查重
论文知识
钛学术官网
按字母查找期刊:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他
联系合作 广告推广: shenyukuan@paperpass.com
京ICP备2021016839号
营业执照
版物经营许可证:新出发 京零 字第 朝220126号