基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高多联机系统压缩机回液故障检测率,本文首次提出了一种基于深度神经网络(Deep Neural Networks,DNN)学习算法的多联机压缩机回液故障诊断模型.故障诊断分为数据变量选取、建立初始模型、DNN模型训练和故障诊断分类预测四个主要步骤.实验共设置3种压缩机状态,选取了17个特征变量,建立了深度神经网络模型.结果表明,深度神经网络学习模型能更高效地检测出两种回液故障,准确率高达99.86%,而且相对于有监督算法的决策树模型无需相关性分析和剪枝过程,相对于无监督算法的聚类分析算法模型无需相关性和主成分分析过程,处理过程简便易操作,且效率相较于两者分别提高了3.48%和5.91%.
推荐文章
基于RBF神经网络的往复压缩机气阀故障诊断
往复压缩机气阀
故障诊断
RBF神经网络
基于粗糙集与模糊神经网络的多级压缩机诊断
往复式压缩机
粗糙集
模糊神经网络
故障诊断
基于LM-BP神经网络的气阀故障诊断方法
Levenberg-Marquardt算法
BP神经网络
多级往复式压缩机
气阀故障
基于改进深度卷积神经网络的轴承故障诊断
风电机组
轴承
故障诊断
深度卷积神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度神经网络学习算法的压缩机回液故障诊断
来源期刊 制冷技术 学科 工学
关键词 多联机系统 压缩机回液 故障检测与诊断 深度学习
年,卷(期) 2020,(6) 所属期刊栏目 研究与分析
研究方向 页码范围 17-23
页数 7页 分类号 TP306.3|TB652
字数 语种 中文
DOI 10.3969/j.issn.2095-4468.2020.06.103
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (146)
共引文献  (17)
参考文献  (21)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(4)
  • 参考文献(1)
  • 二级参考文献(3)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(7)
  • 参考文献(0)
  • 二级参考文献(7)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(7)
  • 参考文献(0)
  • 二级参考文献(7)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(7)
  • 参考文献(0)
  • 二级参考文献(7)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(7)
  • 参考文献(0)
  • 二级参考文献(7)
2014(9)
  • 参考文献(1)
  • 二级参考文献(8)
2015(14)
  • 参考文献(0)
  • 二级参考文献(14)
2016(23)
  • 参考文献(1)
  • 二级参考文献(22)
2017(25)
  • 参考文献(5)
  • 二级参考文献(20)
2018(8)
  • 参考文献(3)
  • 二级参考文献(5)
2019(9)
  • 参考文献(8)
  • 二级参考文献(1)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
多联机系统
压缩机回液
故障检测与诊断
深度学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
制冷技术
双月刊
2095-4468
31-1492/TB
大16开
上海市南昌路47号科学会堂3号楼3313室
1981
chi
出版文献量(篇)
1858
总下载数(次)
2
总被引数(次)
6791
论文1v1指导