基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了更有效地对多标记图像进行分类,提出一个改进的卷积神经网络模型,通过融合多层次特征并利用空间金字塔池化来学习多标记图像中的多尺度特征,同时设计对抗网络生成新的样本辅助模型训练.首先,对传统卷积神经网络模型进行改进,利用空间金字塔池化层替换网络的最后一层,并将在ImageNet上预先训练好的参数传递给该模型;然后,通过将深层特征和浅层特征进行融合,使得模型对不同尺度的物体具有更好的识别能力;最后,设计了一个对抗网络生成带遮挡的样本,使模型对遮挡物体的识别也具有良好的鲁棒性.实验测试在2个基准数据集上进行,文中模型在Corel5K数据集上的平均查准率和平均查全率分别为0.457和0.427,mAP值达到0.442,而在PASCAL VOC2012数据集上的mAP值则达到0.85.实验结果表明,与当前国际先进的模型相比,该模型具有更好的有效性和更强的鲁棒性.
推荐文章
分类重构堆栈生成对抗网络的文本生成图像模型
文本生成图像
堆栈生成对抗网络
分类
重构
跨模态学习
基于特征重标定生成对抗网络的图像分类算法
生成对抗网络
图像分类
特征重标定
深度学习
基于混合神经网络的多波束图像底质分类
底质分类
反向散射强度
自组织特征映射
学习向量量化
SOM神经网络改进及在遥感图像分类中的应用
分类
自组织特征映射
神经网络
遗传算法
遥感图像
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 利用对抗网络改进多标记图像分类
来源期刊 计算机辅助设计与图形学学报 学科 工学
关键词 卷积神经网络 对抗网络 空间金字塔池化 参数迁移 多标记分类
年,卷(期) 2020,(1) 所属期刊栏目 图像与视觉
研究方向 页码范围 16-26
页数 11页 分类号 TP391.41
字数 9594字 语种 中文
DOI 10.3724/SP.J.1089.2020.17663
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李志欣 广西师范大学广西多源信息挖掘与安全重点实验室 30 144 7.0 11.0
2 张灿龙 广西师范大学广西多源信息挖掘与安全重点实验室 41 194 8.0 11.0
3 马慧芳 西北师范大学计算机科学与工程学院 59 520 12.0 21.0
4 周韬 广西师范大学广西多源信息挖掘与安全重点实验室 1 0 0.0 0.0
5 赵卫中 华中师范大学计算机学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (67)
共引文献  (64)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(5)
  • 参考文献(0)
  • 二级参考文献(5)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(11)
  • 参考文献(0)
  • 二级参考文献(11)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(13)
  • 参考文献(1)
  • 二级参考文献(12)
2008(4)
  • 参考文献(1)
  • 二级参考文献(3)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(8)
  • 参考文献(4)
  • 二级参考文献(4)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(2)
  • 参考文献(1)
  • 二级参考文献(1)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
对抗网络
空间金字塔池化
参数迁移
多标记分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机辅助设计与图形学学报
月刊
1003-9775
11-2925/TP
大16开
北京2704信箱
82-456
1989
chi
出版文献量(篇)
6095
总下载数(次)
15
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导