基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
低秩稀疏分解(Low Rank and Sparse Decomposition,LRSD)是一种被广泛应用于计算机视觉等领域的数据表示技术,通过将已知矩阵分解为低秩成分和稀疏成分,实现视频前背景分离、图像去噪等的实际应用.分析了这一技术的研究现状,针对11种经典低秩稀疏分解方法,给出了各种方法的模型及算法的优缺点.将各种算法应用于视频前背景分离和图像去噪实验中,视频前背景分离的实验结果包括使用各种算法提取的不同视频的前景效果图、视频前背景分离的F-measure值和运行时间,图像去噪实验结果展示了各种算法对不同图像的去噪效果图、PSNR值和FSIM值,从视觉效果和定量评价两个角度验证了各种算法在视频前背景分离和图像去噪这两个实际应用中的优缺点.
推荐文章
基于稀疏与低秩矩阵分解的视频背景建模
背景建模
稀疏与低秩矩阵分解
增广拉格朗日乘子法
奇异值分解
块Lanczos
热启动
低秩矩阵和结构化稀疏分解的视频背景差分方法
前景检测
背景差分
矩阵分解
低秩表示
结构化稀疏
基于稀疏与低秩的核磁共振图像重构算法
核磁共振成像
低秩
稀疏
赤池信息量准则
奇异值分解
全变分
期刊_联合空间信息的改进低秩稀疏矩阵分解的高光谱异常目标检测
高光谱图像
异常目标检测 低秩稀疏矩阵分解 稀疏矩阵 残差矩阵
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 低秩稀疏分解及其在视频和图像处理中的应用
来源期刊 计算机工程与应用 学科 工学
关键词 低秩稀疏分解 鲁棒主成分分析 视频前背景分离 图像去噪 鲁棒性
年,卷(期) 2020,(16) 所属期刊栏目 热点与综述
研究方向 页码范围 21-30
页数 10页 分类号 TP391.4|TN911.73
字数 8445字 语种 中文
DOI 10.3778/j.issn.1002-8331.2005-0177
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李建林 南京信息职业技术学院网络与通信学院 18 23 3.0 4.0
2 杨真真 南京邮电大学通信与网络技术国家工程研究中心 21 101 5.0 10.0
3 杨永鹏 南京信息职业技术学院网络与通信学院 6 0 0.0 0.0
4 乐俊 南京邮电大学通信与网络技术国家工程研究中心 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (53)
共引文献  (0)
参考文献  (34)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(5)
  • 参考文献(1)
  • 二级参考文献(4)
2011(7)
  • 参考文献(2)
  • 二级参考文献(5)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(4)
  • 参考文献(1)
  • 二级参考文献(3)
2015(11)
  • 参考文献(3)
  • 二级参考文献(8)
2016(7)
  • 参考文献(2)
  • 二级参考文献(5)
2017(12)
  • 参考文献(4)
  • 二级参考文献(8)
2018(4)
  • 参考文献(4)
  • 二级参考文献(0)
2019(16)
  • 参考文献(13)
  • 二级参考文献(3)
2020(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(3)
  • 参考文献(3)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
低秩稀疏分解
鲁棒主成分分析
视频前背景分离
图像去噪
鲁棒性
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
相关基金
中国博士后科学基金
英文译名:China Postdoctoral Science Foundation
官方网址:http://www.chinapostdoctor.org.cn/index.asp
项目类型:
学科类型:
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导