基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为提高预测模型的可靠性,实现对煤层未采区域瓦斯含量的精确预测,以山阳煤矿5#煤层为研究对象,进行未采区瓦斯含量的预测.运用瓦斯地质学和多元线性回归分析法,得出基岩厚度、煤层厚度和埋深是影响该矿瓦斯赋存的主要因素,并将其作为BP神经网络模型的输入端神经元,初步构建出瓦斯含量预测模型;结合地勘时期瓦斯钻孔的实际数据,进行网络训练,再对预测模型的可靠性进行检验.结果表明:该预测模型预测瓦斯含量,精度较高,效果较好,能满足工程要求.采用多元线性回归-BP神经网络可以对未开采区域煤层瓦斯含量进行准确预测,为矿井瓦斯灾害防治提供一定的参考依据.
推荐文章
基于BP和RBF神经网络的煤与瓦斯突出预测研究
BP神经网络
径向基神经网络
预测
煤与瓦斯突出
基于模糊神经网络的煤矿瓦斯预测
模糊神经网络
瓦斯
煤矿安全
基于BP神经网络的高炉铁水硅含量预测模型研究
铁水硅含量
BP神经网络
预测模型
基于BP神经网络的瓦斯含量预测
瓦斯含量
BP神经网络
预测模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于BP神经网络的未采区瓦斯含量预测
来源期刊 陕西煤炭 学科 工学
关键词 瓦斯预测 BP神经网络 网络训练 多元线性回归
年,卷(期) 2020,(1) 所属期刊栏目 问题探讨
研究方向 页码范围 77-80
页数 4页 分类号 TD712.5
字数 2036字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张岩 2 1 1.0 1.0
2 高帅帅 2 1 1.0 1.0
3 高望 2 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (53)
共引文献  (119)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(6)
  • 参考文献(1)
  • 二级参考文献(5)
2011(8)
  • 参考文献(3)
  • 二级参考文献(5)
2012(5)
  • 参考文献(1)
  • 二级参考文献(4)
2013(3)
  • 参考文献(1)
  • 二级参考文献(2)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
瓦斯预测
BP神经网络
网络训练
多元线性回归
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
陕西煤炭
双月刊
1671-749X
61-1382/TD
大16开
西安市碑林区太乙路182号陕煤重装大厦5011室
1982
chi
出版文献量(篇)
5617
总下载数(次)
11
总被引数(次)
9355
论文1v1指导