基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
通常的微博观点句识别主要根据微博评论本身是否带有观点来进行判断,而案件微博的观点句识别需要进一步考虑该评论是否讨论与特定案件相关的主题.针对这一任务,该文提出一种结合微博原文进行特征扩展的观点句识别模型.以卷积神经网络分类模型为基本框架,在嵌入层加入案件微博原文中的关键词向量,与对应评论词向量进行拼接;利用扩展的特征进行观点句识别.实验表明,该模型在根据案件微博爬取的两个数据集下准确率分别达到84.74%和82.09%,与现有的基准模型相比有较明显提升.
推荐文章
基于卷积神经网络和Tree-LSTM的微博情感分析
卷积神经网络
注意力机制
长短期记忆神经网络
微博情感分析
基于卷积神经网络的细胞识别
细胞识别
卷积神经网络
深度学习
池化层
基于特征模板提取及SVM的观点句识别
观点句识别
微博
二元模板
特征提取
基于卷积神经网络的未知协议识别方法
深度学习
机器学习
卷积神经网络
未知协议识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于特征扩展卷积神经网络的案件微博观点句识别
来源期刊 中文信息学报 学科 工学
关键词 案件 微博评论 微博正文 观点句识别 卷积神经网络
年,卷(期) 2020,(9) 所属期刊栏目 情感分析与社会计算
研究方向 页码范围 62-69
页数 8页 分类号 TP391
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (16)
共引文献  (11)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(5)
  • 参考文献(1)
  • 二级参考文献(4)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
案件
微博评论
微博正文
观点句识别
卷积神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中文信息学报
月刊
1003-0077
11-2325/N
16开
北京海淀区中关村南四街4号
1986
chi
出版文献量(篇)
2723
总下载数(次)
5
总被引数(次)
45413
论文1v1指导