基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 织物识别是提高纺织业竞争力的重要计算机辅助技术.与通用图像相比,织物图像通常只在纹理和形状特征方面呈现细微差异.目前常见的织物识别算法仅考虑图像特征,未结合织物面料的视觉和触觉特征,不能反映出织物本身面料属性,导致识别准确率较低.本文以常见服用织物为例,针对目前常见织物面料识别准确率不高的问题,提出一种结合面料属性和触觉感测的织物图像识别算法.方法 针对输入的织物样本,建立织物图像的几何测量方法,量化分析影响织物面料属性的3个关键因素,即恢复性、拉伸性和弯曲性,并进行面料属性的参数化建模,得到面料属性的几何度量.通过传感器设置对织物进行触感测量,采用卷积神经网络(convolu-tional neural network,CNN)提取测量后的织物触感图像的底层特征.将面料属性几何度量与提取的底层特征进行匹配,通过CNN训练得到织物面料识别模型,学习织物面料属性的不同参数,实现织物面料的识别并输出识别结果.结果 在构建的常见服用织物样本上验证了本文方法,与同任务的方法比较,本文方法识别率更高,平均识别率达到89.5%.结论 提出了一种基于面料属性和触觉感测的织物图像识别方法,能准确识别常用的服装织物面料,有效提高了织物识别的准确率,能较好地满足实际应用需求.
推荐文章
织物刺激的人体触觉感知及其大脑认知研究
织物手感
接触舒适性
刺痒感
触觉感知
大脑认知
脑电图
功能磁共振成像
精纺面料的弹性整理和织物性能
精纺面料
弹性整理
Siro-FAST
面料性能
面料凉感功能研究
面料
凉感功能
测试
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 结合面料属性和触觉感测的织物识别
来源期刊 中国图象图形学报 学科 工学
关键词 织物识别 面料属性 触觉感测 卷积神经网络 参数学习
年,卷(期) 2020,(9) 所属期刊栏目 图像分析和识别
研究方向 页码范围 1800-1812
页数 13页 分类号 TP301.6
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 付晓东 57 180 7.0 10.0
2 黄青松 91 265 9.0 12.0
3 刘利军 77 196 7.0 10.0
4 刘骊 41 128 5.0 10.0
5 邢寅初 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (25)
共引文献  (15)
参考文献  (16)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(2)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(5)
  • 参考文献(4)
  • 二级参考文献(1)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(3)
  • 参考文献(1)
  • 二级参考文献(2)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
织物识别
面料属性
触觉感测
卷积神经网络
参数学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导