基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
航空业的竞争愈发激烈,高效且准确的客户忠诚度预测模型有利于提高企业竞争力.针对航空数据集存在严重分类不平衡、特征维度多等问题,提出了客户忠诚度预测模型.该模型基于自适应粒子群优化(APSO)算法得到多数类优化样本子集,使用卷积神经网络(CNN)提取得到的平衡数据集特征,将自动得到的特征向量作为随机森林(RF)算法的输入,构建客户忠诚度预测模型.实验结果表明,该方法预测性能优于其他预测模型,可以更好地预测客户忠诚度.
推荐文章
自适应双层粒子群优化算法
粒子群优化
双层粒子群
自适应
惯性权重
基于自适应粒子群优化的粒子滤波跟踪算法
粒子滤波跟踪
粒子群优化
自适应调整
搜索能力平衡
随机变异
优化算法
基于粒子群算法的三相不平衡换相策略研究
三相不平衡
粒子群算法
低压配电网
智能换相
基于自适应学习的多目标粒子群优化算法
粒子群优化
多目标优化
自适应惯性权值
聚类排挤
最优搜索方向学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于自适应粒子群优化的不平衡航空客户数据质量优化
来源期刊 厦门大学学报(自然科学版) 学科 工学
关键词 自适应粒子群 卷积神经网络 随机森林 忠诚度预测
年,卷(期) 2020,(6) 所属期刊栏目
研究方向 页码范围 1011-1015
页数 5页 分类号 TP391
字数 语种 中文
DOI 10.6043/j.issn.0438-0479.201910024
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨小兵 17 99 4.0 9.0
2 姚雨虹 3 0 0.0 0.0
3 陈欣 3 14 1.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (87)
共引文献  (23)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(8)
  • 参考文献(2)
  • 二级参考文献(6)
2014(10)
  • 参考文献(0)
  • 二级参考文献(10)
2015(10)
  • 参考文献(1)
  • 二级参考文献(9)
2016(8)
  • 参考文献(0)
  • 二级参考文献(8)
2017(14)
  • 参考文献(1)
  • 二级参考文献(13)
2018(3)
  • 参考文献(1)
  • 二级参考文献(2)
2019(7)
  • 参考文献(7)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
自适应粒子群
卷积神经网络
随机森林
忠诚度预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
厦门大学学报(自然科学版)
双月刊
0438-0479
35-1070/N
大16开
福建省厦门市厦门大学囊萤楼218-221室
34-8
1931
chi
出版文献量(篇)
4740
总下载数(次)
7
总被引数(次)
51714
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导