基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
神经网络压缩技术的出现缓解了深度神经网络模型在资源受限设备中的应用难题,如移动端或嵌入式设备.但神经网络压缩技术在压缩处理的自动化、稀疏度与硬件部署之间的矛盾、避免压缩后模型重训练等方面存在困难.本文在回顾经典神经网络模型和现有神经网络压缩工具的基础上,总结参数剪枝、参数量化、低秩分解和知识蒸馏四类压缩方法的代表性压缩算法的优缺点,概述压缩方法的评测指标和常用数据集,并分析各种压缩方法在不同任务和硬件资源约束中的性能表现,展望神经网络压缩技术具有前景的研究方向.
推荐文章
稀疏卷积神经网络加速器设计
稀疏卷积神经网络
阵列运算
加速器
高能效比
基于FPGA的卷积神经网络加速器设计与实现
卷积神经网络
现场可编程门阵列
加速器
有限资源
基于卷积神经网络的目标检测研究综述
卷积神经网络
目标检测
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 卷积神经网络压缩与加速技术研究进展
来源期刊 计算机系统应用 学科
关键词 神经网络压缩 参数剪枝 参数量化 低秩分解 知识蒸馏
年,卷(期) 2020,(9) 所属期刊栏目 专论·综述
研究方向 页码范围 16-25
页数 10页 分类号
字数 9527字 语种 中文
DOI 10.15888/j.cnki.csa.007632
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 尹文枫 1 0 0.0 0.0
2 梁玲燕 1 0 0.0 0.0
3 彭慧民 1 0 0.0 0.0
4 曹其春 1 0 0.0 0.0
5 赵健 1 0 0.0 0.0
6 董刚 1 0 0.0 0.0
7 赵雅倩 1 0 0.0 0.0
8 赵坤 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (10)
共引文献  (13)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(2)
  • 参考文献(1)
  • 二级参考文献(1)
2017(5)
  • 参考文献(1)
  • 二级参考文献(4)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
神经网络压缩
参数剪枝
参数量化
低秩分解
知识蒸馏
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机系统应用
月刊
1003-3254
11-2854/TP
大16开
北京中关村南四街4号
82-558
1991
chi
出版文献量(篇)
10349
总下载数(次)
20
总被引数(次)
57078
论文1v1指导