在尺度、遮挡等因素的影响下,人脸检测算法速度和精度不匹配进而表现出检测性能差等系列缺点,采用融入模板匹配思想的神经网络检测器算法解决这一不足,提出了二分支神经网络匹配的人脸检测算法.以此得到检测速度与精度相匹配的改进方法.首先根据五官位置关系构建人脸模板框架并设置一定的阈值;其次依据构建的模板和锚策略对不同尺度人脸的鲁棒性,在DSFD人脸检测器的特征增强模块层中实现对样本数据中人脸区域的提取及标记;最后依据提取、标记的人脸区域与构建的模板进行相关性匹配.改进算法在Face Detection Data Set and Benchmark、FDDB、WIDER FACE人脸数据集的实验结果表明,在提升检测速度的同时保证算法的精度,相比几类相近算法,该算法的优势更加明显.