原文服务方: 中国机械工程       
摘要:
针对电池荷电状态(SOC)难以准确估计的问题,采用扩展卡尔曼滤波方法来提高SOC的估计精度.首先以磷酸铁锂电池为研究对象,建立了电池的PNGV等效电路模型,并采用充放电实验和离线辨识的方法得到模型中的参数,得到了开路电压、欧姆内阻、极化内阻和极化电容与SOC的多项式函数关系;然后,对模型进行验证,并分析了模型的准确性;最后,在实际工况下,运用扩展卡尔曼滤波方法估计锂离子电池的SOC值,并与安时法计算的SOC值进行比较.结果表明,PNGV模型结合扩展卡尔曼滤波方法估计的锂离子电池SOC值的最大误差仅为2.78%,提高了电池SOC的估计精度.
推荐文章
基于扩展卡尔曼的锂离子电池SOC估算研究
SOC估算系统
锂离子电池
扩展卡尔曼滤波法
等效电路模型
基于扩展卡尔曼滤波的锂离子电池寿命预测方法
扩展卡尔曼滤波
最优局部加权回归平滑
锂离子电池
寿命预测
双自适应衰减卡尔曼滤波锂电池荷电状态估计
锂离子电池
荷电状态
自适应卡尔曼滤波
扩展卡尔曼滤波
双自适应
基于交互式多模型卡尔曼滤波的电池荷电状态估计
荷电状态
交互式多模型
扩展卡尔曼滤波
锂离子电池
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于扩展卡尔曼滤波的锂离子电池荷电状态估计
来源期刊 中国机械工程 学科
关键词 锂离子电池 荷电状态(SOC) PNGV模型 开路电压 扩展卡尔曼滤波
年,卷(期) 2020,(3) 所属期刊栏目 可持续制造
研究方向 页码范围 321-327,343
页数 8页 分类号 TM912
字数 语种 中文
DOI 10.3969/j.issn.1004-132X.2020.03.010
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李伟 大连理工大学机械工程学院 50 296 9.0 15.0
2 刘伟嵬 大连理工大学机械工程学院 11 25 2.0 5.0
3 邓业林 苏州大学轨道交通学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (3)
共引文献  (34)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(3)
  • 参考文献(3)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
锂离子电池
荷电状态(SOC)
PNGV模型
开路电压
扩展卡尔曼滤波
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国机械工程
月刊
1004-132X
42-1294/TH
大16开
湖北省武汉市洪山区南李路湖北工业大学
1990-01-01
中文
出版文献量(篇)
13171
总下载数(次)
0
总被引数(次)
206238
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导