基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对核范数有偏近似秩函数导致基于核范数最小化的传统去噪方法去噪性能较差的问题,基于低秩理论,提出一种基于伽马范数最小化的图像去噪算法.首先对噪声图像重叠分块,然后基于结构相似性指数自适应搜索与当前图像块最相似的若干非局部图像块以组成相似图像块矩阵,进而利用非凸伽马范数无偏近似矩阵秩函数构建低秩去噪模型,最后基于奇异值分解对所得低秩去噪优化问题求解,并将去噪图像块重组为去噪图像.仿真结果表明,与现有主流PID、NLM、BM3D、NNM、WNNM、DnCNN和FFDNet算法相比,所提算法可较显著地消除高斯噪声,且可较好地恢复原始图像细节.
推荐文章
基于稀疏表示与加权核范数最小化的图像去噪算法
稀疏表示
加权核范数最小化
图像去噪
图像特征
维纳滤波
基于Contourlet变换的图像去噪算法
Contourlet变换
图像去噪
硬阈值
软阈值
基于边界积分方程的局部图像去噪算法
图像处理
积分方程
边界元方法
GMRES方法
基于CUDA架构并行设计图像去噪算法
CUDA
图像去噪
K-SVD
图形处理器
并行优化
矩阵拉伸
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于伽马范数最小化的图像去噪算法
来源期刊 通信学报 学科 工学
关键词 图像去噪 低秩去噪模型 非凸优化 伽马范数 结构相似性指数
年,卷(期) 2020,(10) 所属期刊栏目 学术通信
研究方向 页码范围 222-230
页数 9页 分类号 TP391.41
字数 语种 中文
DOI 10.11959/j.issn.1000-436x.2020190
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (19)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(2)
  • 参考文献(2)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(5)
  • 参考文献(5)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
图像去噪
低秩去噪模型
非凸优化
伽马范数
结构相似性指数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
通信学报
月刊
1000-436X
11-2102/TN
大16开
北京市丰台区成寿路11号邮电出版大厦8层
2-676
1980
chi
出版文献量(篇)
6235
总下载数(次)
17
总被引数(次)
85479
论文1v1指导