基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对人脸复原过程中出现失真和重要细节丢失的问题,提出一种基于深度卷积生成式对抗网络的人脸恢复方法.使用人脸恢复网络对风格化的图像提取人脸视觉特征,通过结合面部属性提供的语义信息来生成具有真实感的人脸图像;利用识别网络判别恢复图像与真实图像之间的相似度,以及相应面部属性匹配的一致性;提出一种人脸恢复损失函数,有效保留面部细节的同时生成与真实图像属性相匹配的清晰图像.实验结果表明,对于不同风格化的人脸图像,该方法可以获得真实且属性匹配的人脸图像,性能明显优于其他方法.
推荐文章
基于深度卷积稀疏自编码分层网络的人脸识别技术
人脸识别
特征提取
稀疏自编码
卷积神经网络
SVM分类器
深度网络
基于生成对抗文本的人脸图像翻译
人脸图像翻译
生成对抗文本
深度对称结构联合编码
一种基于融合深度卷积神经网络与度量学习的人脸识别方法
多Inception结构
深度卷积神经网络
度量学习方法
深度人脸识别
特征提取
损失函数融合
基于并行卷积神经网络的人脸关键点定位方法研究
人脸特征点定位
卷积神经网络
图像卷积
下图像采样
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度卷积生成式对抗网络的人脸恢复方法
来源期刊 计算机应用与软件 学科 工学
关键词 深度卷积 生成式对抗网络 人脸恢复 风格迁移
年,卷(期) 2020,(8) 所属期刊栏目 图像处理与应用
研究方向 页码范围 207-212
页数 6页 分类号 TP391.4
字数 5239字 语种 中文
DOI 10.3969/j.issn.1000-386x.2020.08.036
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 钱真坤 四川文理学院智能制造学院 20 51 4.0 6.0
2 吴晓燕 四川文理学院智能制造学院 25 63 4.0 7.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (20)
共引文献  (49)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(3)
  • 参考文献(0)
  • 二级参考文献(3)
2017(8)
  • 参考文献(1)
  • 二级参考文献(7)
2018(4)
  • 参考文献(4)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度卷积
生成式对抗网络
人脸恢复
风格迁移
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用与软件
月刊
1000-386X
31-1260/TP
大16开
上海市愚园路546号
4-379
1984
chi
出版文献量(篇)
16532
总下载数(次)
47
总被引数(次)
101489
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导