基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
首先使惯性权重随迭代次数和粒子状态非线性改变平衡算法的全局探测和局部开采的能力,为了解决惯性权重与学习因子独立调整削弱了粒子群算法的统一性和智能性等问题,通过分析惯性权重与学习因子的变化关系,将学习因子表示为惯性权重的logistic回归分析型函数.由于非线性因子的加入会降低粒子的多样性,结合差分进化算法的交叉算子和变异策略,利用交叉算子来提高算法的全局探索能力,保持种群多样性;利用差分进化算法的变异策略产生候选解来更新位置公式,给出了学习因子随权重调整的混合粒子群算法,并对新提出算法的收敛性进行理论分析.将此改进算法与相关算法在四个测试函数上进行对比实验,证明该算法在寻优精度、迭代速度和收敛成功率上有明显改进.
推荐文章
学习因子和时间因子随权重调整的粒子群算法
粒子群优化算法
学习因子
时间因子
边界限制
速度反弹
学习因子和时间因子随权重调整的粒子群算法
粒子群优化算法
学习因子
时间因子
边界限制
速度反弹
改进学习因子和约束因子的混合粒子群算法
混合粒子群优化算法
全局—局部最优
学习因子
约束因子
基于Sigmoid惯性权重自适应调整的粒子群优化算法
粒子群优化算法
早熟
惯性权重
适应度
自适应
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 学习因子随权重调整的混合粒子群算法
来源期刊 计算机技术与发展 学科 工学
关键词 粒子群算法 学习因子 惯性权重 混合算法 收敛性分析
年,卷(期) 2020,(11) 所属期刊栏目 智能、算法、系统工程
研究方向 页码范围 30-36
页数 7页 分类号 TP301
字数 语种 中文
DOI 10.3969/j.issn.1673-629X.2020.11.006
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (40)
共引文献  (51)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(5)
  • 参考文献(1)
  • 二级参考文献(4)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(3)
  • 参考文献(2)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(5)
  • 参考文献(1)
  • 二级参考文献(4)
2017(8)
  • 参考文献(2)
  • 二级参考文献(6)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
粒子群算法
学习因子
惯性权重
混合算法
收敛性分析
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导