基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对人脸超分辨率重建中引入的先验知识不够丰富的问题,提出了一种基于Wasserstein生成对抗网络(WGAN)的人脸超分辨率重建算法.模型包含生成网络和判别网络,生成网络去除批量规范层并增加残差块数量加深网络深度,判别网络增加特征图通道数并引入了快捷连接优化网络,模型用Wasserstein距离代替KL散度作为网络的对抗损失,交替训练生成网络和判别网络,生成高分辨率的人脸图像.实验结果表明,相比原始生成对抗网络超分辨率重建算法(SRGAN),所提算法在MS-Celeb-1M和LFW数据集中峰值信噪比(PSNR)和结构相似性(SSIM)分别提高了0.26 dB、2%和0.31 dB、3%,同时对比最近邻(NN)、双三次插值(Bic)、基于卷积神经网络超分辨率重建(SRCNN)、SRGAN,所提算法在LFW、MS-Celeb-1M数据集上均重建出视觉效果更好的人脸图像,证明了该算法的有效性,为人脸超分辨率重建提出了新的解决方案.
推荐文章
基于ResNeXt和WGAN网络的单图像超分辨率重建
单图像超分辨率重建
ResNeXt
WGAN
深度学习
基于非降采样 Contourlet 的单帧图像超分辨率算法
NSCT
图像插值
超分辨率重建
图像增强
图像去噪
基于回归函数结合局部自相似的单帧图像超分辨率算法
完备字典
稀疏线性组合
超分辨率
单帧
局部自相似
局部回归
基于马尔可夫网络人脸图像超分辨率非线性算法
人脸图像
超分辨率
马尔可夫网络
非线性搜索
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于WGAN单帧人脸图像超分辨率算法
来源期刊 计算机技术与发展 学科 工学
关键词 生成对抗网络 Wasserstein距离 残差网络 超分辨率重建 深度学习
年,卷(期) 2020,(9) 所属期刊栏目 智能、算法、系统工程
研究方向 页码范围 29-35
页数 7页 分类号 TP391.41
字数 语种 中文
DOI 10.3969/j.issn.1673-629X.2020.09.006
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 周传华 23 104 6.0 9.0
2 李鸣 5 10 1.0 3.0
3 吴幸运 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (35)
共引文献  (82)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(4)
  • 参考文献(2)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(4)
  • 参考文献(1)
  • 二级参考文献(3)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(6)
  • 参考文献(1)
  • 二级参考文献(5)
2017(4)
  • 参考文献(1)
  • 二级参考文献(3)
2018(4)
  • 参考文献(4)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
生成对抗网络
Wasserstein距离
残差网络
超分辨率重建
深度学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导