基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统字符识别方法缺乏对污染车牌字符正确识别的能力,难以有效分辨易混淆字符等.针对这些弊端,采用MATLAB对真实车牌字符图像进行处理,提出一种基于离散Hopfield神经网络的改进算法(CLP-HNN),对车牌字母及数字进行识别.实验结果表明,该算法对污染车牌字符识别率达93.3%,不仅可有效降低污染车牌错误识别的风险,而且可提高易混淆字符正确辨别率,对减少车牌误识别引起的交通安全及秩序问题有较大参考价值.
推荐文章
基于神经网络的分阶车牌字符识别算法研究
车牌字符识别
BP神经网络
卷积神经网络
分阶
径向基神经网络算法在车牌字符识别中的应用
汽车车牌
字符分割
字符识别
径向基网络
基于小波和神经网络的车牌字符识别新方法
小波变换
神经网络
车牌识别
字符识别
基于神经网络算法的字符识别方法研究
BP神经网络
车牌
字符识别
形状
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于离散Hopfield神经网络的污染车牌字符识别
来源期刊 软件导刊 学科 工学
关键词 污染车牌 字符识别 Hopfield神经网络
年,卷(期) 2020,(7) 所属期刊栏目 人工智能
研究方向 页码范围 32-35
页数 4页 分类号 TP301
字数 2879字 语种 中文
DOI 10.11907/rjdk.192300
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 孙国强 上海理工大学光电信息与计算机工程学院 64 308 9.0 15.0
2 刘玥 上海理工大学光电信息与计算机工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (52)
共引文献  (37)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1965(1)
  • 参考文献(0)
  • 二级参考文献(1)
1968(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(1)
  • 二级参考文献(0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(5)
  • 参考文献(2)
  • 二级参考文献(3)
2016(5)
  • 参考文献(2)
  • 二级参考文献(3)
2017(3)
  • 参考文献(2)
  • 二级参考文献(1)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
污染车牌
字符识别
Hopfield神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件导刊
月刊
1672-7800
42-1671/TP
16开
湖北省武汉市
38-431
2002
chi
出版文献量(篇)
9809
总下载数(次)
57
总被引数(次)
30383
论文1v1指导