钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
任务中心
登录
文献导航
学科分类
>
综合
工业技术
科教文艺
医药卫生
基础科学
经济财经
社会科学
农业科学
哲学政法
社会科学II
哲学与人文科学
社会科学I
经济与管理科学
工程科技I
工程科技II
医药卫生科技
信息科技
农业科技
数据库索引
>
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
默认
篇关摘
篇名
关键词
摘要
全文
作者
作者单位
基金
分类号
搜索文章
搜索思路
钛学术文献服务平台
\
学术期刊
\
工业技术期刊
\
自动化技术与计算机技术期刊
\
计算机应用期刊
\
基于自监督学习的病理图像层次分割
基于自监督学习的病理图像层次分割
作者:
吴崇数
时鹏
林霖
薛蕴菁
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取
病理图像
图像分割
自监督学习
K-means聚类
朴素贝叶斯分类
摘要:
在苏木精-伊红(HE)染色病理图像中,细胞染色分布的不均匀和各类组织形态的多样性给病理图像的自动分割带来极大挑战.为解决该问题,提出了一种基于自监督学习的病理图像三步层次分割方法,对病理图像中各类组织进行由粗略到精细的全自动逐层分割.首先,根据互信息的计算结果在RGB色彩空间中进行特征选择;其次,采用K-means聚类将图像初步分割为各类组织结构的色彩稳定区域与模糊区域;然后,以色彩稳定区域为训练集采用朴素贝叶斯分类对模糊区域进行进一步分割,得到完整的细胞核、细胞质和胞外间隙这三类组织结构;最后,对细胞核部分进行结合形状和色彩强度的混合分水岭分割得到细胞核间的精确边界,进而量化计算细胞核个数、核占比、核质比等指标.对脑膜瘤HE染色病理图像的分割实验结果表明,所提方法对于染色和细胞形态差异保持较高的鲁棒性,各类组织区域分割误差在5%以内,在细胞核分割精度的对比实验中平均正确率在96%以上,满足临床自动图像分析的要求,其量化结果可以为定量病理分析提供依据.
暂无资源
收藏
引用
分享
推荐文章
彩色图像分割中基于图上半监督学习算法研究
交互式图像分割
图上半监督
颜色相似性特征
双高斯模型
基于自监督学习的河流分割方法
自监督学习
河流分割
K均值聚类
Harris角点
支持向量机
基于半监督学习的一种图像检索方法
基于内容的图像检索
半监督学习
图像特征
相关度
查准率—查全率曲线
基于半监督学习的眉毛图像分割方法
半监督学习
图像分割
眉毛识别
特征提取
内容分析
文献信息
引文网络
相关学者/机构
相关基金
期刊文献
内容分析
关键词云
关键词热度
相关文献总数
(/次)
(/年)
文献信息
篇名
基于自监督学习的病理图像层次分割
来源期刊
计算机应用
学科
工学
关键词
病理图像
图像分割
自监督学习
K-means聚类
朴素贝叶斯分类
年,卷(期)
2020,(6)
所属期刊栏目
应用前沿、交叉与综合
研究方向
页码范围
1856-1862
页数
7页
分类号
TP181
字数
6669字
语种
中文
DOI
10.11772/j.issn.1001-9081.2019101863
五维指标
作者信息
序号
姓名
单位
发文数
被引次数
H指数
G指数
1
薛蕴菁
福建医科大学附属协和医院放射科
37
188
7.0
12.0
2
林霖
福建医科大学附属协和医院放射科
3
6
2.0
2.0
传播情况
被引次数趋势
(/次)
(/年)
引文网络
引文网络
二级参考文献
(23)
共引文献
(1)
参考文献
(13)
节点文献
引证文献
(0)
同被引文献
(0)
二级引证文献
(0)
1990(1)
参考文献(0)
二级参考文献(1)
1994(3)
参考文献(1)
二级参考文献(2)
1997(1)
参考文献(0)
二级参考文献(1)
1998(1)
参考文献(0)
二级参考文献(1)
2001(1)
参考文献(0)
二级参考文献(1)
2005(1)
参考文献(0)
二级参考文献(1)
2008(2)
参考文献(1)
二级参考文献(1)
2009(4)
参考文献(1)
二级参考文献(3)
2010(3)
参考文献(0)
二级参考文献(3)
2011(2)
参考文献(0)
二级参考文献(2)
2012(5)
参考文献(0)
二级参考文献(5)
2014(1)
参考文献(0)
二级参考文献(1)
2015(2)
参考文献(1)
二级参考文献(1)
2016(3)
参考文献(3)
二级参考文献(0)
2017(2)
参考文献(2)
二级参考文献(0)
2018(4)
参考文献(4)
二级参考文献(0)
2020(0)
参考文献(0)
二级参考文献(0)
引证文献(0)
二级引证文献(0)
研究主题发展历程
节点文献
病理图像
图像分割
自监督学习
K-means聚类
朴素贝叶斯分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用
主办单位:
四川省计算机学会
中国科学院成都分院
出版周期:
月刊
ISSN:
1001-9081
CN:
51-1307/TP
开本:
大16开
出版地:
成都237信箱
邮发代号:
62-110
创刊时间:
1981
语种:
chi
出版文献量(篇)
20189
总下载数(次)
40
期刊文献
相关文献
1.
彩色图像分割中基于图上半监督学习算法研究
2.
基于自监督学习的河流分割方法
3.
基于半监督学习的一种图像检索方法
4.
基于半监督学习的眉毛图像分割方法
5.
正例半监督学习眉毛图像分割
6.
基于无监督学习的行人检测算法
7.
基于人工免疫的监督学习模型及其应用
8.
基于多空间多层次谱聚类的非监督SAR图像分割算法
9.
采用无监督学习算法与卷积的图像分类模型
10.
基于非监督学习的入侵分析新方法
11.
基于半监督学习的应用流分类方法
12.
基于半监督学习的自动驾驶场景下的目标检测
13.
基于子空间半监督学习线性判别方法的目标跟踪技术研究
14.
基于无监督学习的P2P流量识别
15.
基于半监督学习的Web页面内容分类技术研究
推荐文献
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
任务中心
登录
根据相关规定,获取原文需跳转至原文服务方进行注册认证身份信息
完成下面三个步骤操作后即可获取文献,阅读后请
点击下方页面【继续获取】按钮
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
原文合作方
继续获取
获取文献流程
1.访问原文合作方请等待几秒系统会自动跳转至登录页,首次访问请先注册账号,填写基本信息后,点击【注册】
2.注册后进行实名认证,实名认证成功后点击【返回】
3.检查邮箱地址是否正确,若错误或未填写请填写正确邮箱地址,点击【确认支付】完成获取,文献将在1小时内发送至您的邮箱
*若已注册过原文合作方账号的用户,可跳过上述操作,直接登录后获取原文即可
点击
【获取原文】
按钮,跳转至合作网站。
首次获取需要在合作网站
进行注册。
注册并实名认证,认证后点击
【返回】按钮。
确认邮箱信息,点击
【确认支付】
, 订单将在一小时内发送至您的邮箱。
*
若已经注册过合作网站账号,请忽略第二、三步,直接登录即可。
期刊分类
期刊(年)
期刊(期)
期刊推荐
一般工业技术
交通运输
军事科技
冶金工业
动力工程
化学工业
原子能技术
大学学报
建筑科学
无线电电子学与电信技术
机械与仪表工业
水利工程
环境科学与安全科学
电工技术
石油与天然气工业
矿业工程
自动化技术与计算机技术
航空航天
轻工业与手工业
金属学与金属工艺
计算机应用2022
计算机应用2021
计算机应用2020
计算机应用2019
计算机应用2018
计算机应用2017
计算机应用2016
计算机应用2015
计算机应用2014
计算机应用2013
计算机应用2012
计算机应用2011
计算机应用2010
计算机应用2009
计算机应用2008
计算机应用2007
计算机应用2006
计算机应用2005
计算机应用2004
计算机应用2003
计算机应用2002
计算机应用2001
计算机应用2000
计算机应用1999
计算机应用2020年第z2期
计算机应用2020年第z1期
计算机应用2020年第9期
计算机应用2020年第8期
计算机应用2020年第7期
计算机应用2020年第6期
计算机应用2020年第5期
计算机应用2020年第4期
计算机应用2020年第3期
计算机应用2020年第2期
计算机应用2020年第12期
计算机应用2020年第11期
计算机应用2020年第10期
计算机应用2020年第1期
关于我们
用户协议
隐私政策
知识产权保护
期刊导航
免费查重
论文知识
钛学术官网
按字母查找期刊:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他
联系合作 广告推广: shenyukuan@paperpass.com
京ICP备2021016839号
营业执照
版物经营许可证:新出发 京零 字第 朝220126号