为实现滚动轴承故障特征分析,提出了一种基于小波包变换(Wavelet Packet Transform,WPT)结合随机森林(Random Forests,RF)的滚动轴承故障分析模型.首先,采用小波包变换对振动信号进行分解,对终端节点进行重构,再计算重构信号及其希尔伯特边际谱的11种统计参数,得到统计特征,构建原始特征集;针对原始特征集中存在的冗余和干扰特征,提出一种基于平均精确率减少的特征选择方法(Features Selection base on Mean Decrease Accuracy,FSMDA),标记特征对轴承故障的重要度,选取重要度高的统计特征用于故障状态识别;最后,利用随机森林实现滚动轴承故障特征分析与状态识别.采用12种轴承故障状态数据进行实验分析,实验结果表明FSMDA能够选择出对故障状态较为重要的特征,提高故障状态识另准确率,并且具有较好的适应性.