基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对节能车为有效降低燃油消耗率,在整车经过弯道时,发动机需怠速滑行的特点,对GPS车载数据采集系统得到的数据进行弯道部分数据提取.基于提取出的北京金港国际赛车场150余组数据,通过引入BP神经网络算法的方式,建立了节能车弯道降速的BP神经网络预测模型.在经遗传算法优化后,拟合优度的结果显示,BP神经网络的预测较为接近真实情况,预测效果较为良好,可以用于节能车滑行过弯速度变化情况预测,并为不同赛道不同工况下整车速度分配提供参考依据.
推荐文章
基于BP神经网络的公交车到站时间预测
公交车到站时间
智能化
公交调研
非线性
数学模型
BP神经网络
基于RBF神经网络的螺旋分级机数学模型
螺旋分级机
数学模型
径向基函数
递归最小二乘法
基于改进BP神经网络的关联挖掘模型设计
BP神经网络
关联挖掘模型
算法改进
二次函数
选择能力
用户交互
基于BP神经网络的复合材料失效分析
复合材料
BP神经网络
失效分析
结构优化
训练优化
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于BP神经网络的节能车弯道降速数学模型分析
来源期刊 汽车实用技术 学科 交通运输
关键词 节能车 神经网络 速度优化
年,卷(期) 2020,(10) 所属期刊栏目 测试试验
研究方向 页码范围 140-144
页数 5页 分类号 U467
字数 3664字 语种 中文
DOI 10.16638/j.cnki.1671-7988.2020.10.042
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 曾小华 吉林大学汽车仿真与控制国家重点实验室 77 1025 18.0 30.0
2 姜长文 吉林大学汽车工程学院 1 0 0.0 0.0
3 魏福龙 吉林大学汽车工程学院 1 0 0.0 0.0
4 孙航 吉林大学汽车工程学院 3 19 1.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (67)
共引文献  (179)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(2)
  • 二级参考文献(1)
2001(3)
  • 参考文献(1)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(7)
  • 参考文献(0)
  • 二级参考文献(7)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(7)
  • 参考文献(0)
  • 二级参考文献(7)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(8)
  • 参考文献(1)
  • 二级参考文献(7)
2015(4)
  • 参考文献(1)
  • 二级参考文献(3)
2016(4)
  • 参考文献(1)
  • 二级参考文献(3)
2017(4)
  • 参考文献(1)
  • 二级参考文献(3)
2018(3)
  • 参考文献(1)
  • 二级参考文献(2)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
节能车
神经网络
速度优化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
汽车实用技术
半月刊
1671-7988
61-1394/TH
大16开
西安市未央区凤城七路赛高广场1008室
1976
chi
出版文献量(篇)
13181
总下载数(次)
93
总被引数(次)
9850
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导