基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
本文运用Poincaré-Miranda定理数值验证变分不等式问题解的存在性.证明这一新方法相对于已有的方法更具有普遍性,并通过数值例子说明本方法的高效性.
推荐文章
例外簇和变分不等式解的存在性
变分不等式
例外簇
拓扑度
半严格拟单调映射变分不等式的对偶问题
伪单调映射
严格拟单调
半严格拟单调
垂直点
例外簇和变分不等式解的存在性
变分不等式
例外簇
拓扑度
基于变分不等式的地下洞室渗流边界模拟
变分不等式
变带宽迭代
出渗
边界条件
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 运用Poincaré-Miranda定理数值验证变分不等式解的存在性
来源期刊 计算数学 学科
关键词 变分不等式 Poincaré-Miranda定理 数值验证 解的存在性
年,卷(期) 2021,(1) 所属期刊栏目
研究方向 页码范围 56-69
页数 14页 分类号
字数 语种 中文
DOI 10.12286/jssx.j2019-0582
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1980(1)
  • 参考文献(1)
  • 二级参考文献(0)
1990(1)
  • 参考文献(1)
  • 二级参考文献(0)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(3)
  • 参考文献(3)
  • 二级参考文献(0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
变分不等式
Poincaré-Miranda定理
数值验证
解的存在性
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算数学
季刊
0254-7791
11-2125/O1
16开
北京海淀区中关村东路55号
2-521
1979
chi
出版文献量(篇)
892
总下载数(次)
2
论文1v1指导