基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对自然图像识别过程中不同深度学习模型关注兴趣区域不同的现象,本文引入深度卷积神经网络融合机制,结合深度迁移学习方法,给出了一种基于多感知兴趣区域特征融合的图像识别方法.本文将迁移学习方法引入牛津大学视觉组网络模型(visual geometry group network,VGGNet)和残差网络模型(residual network,ResNet),通过对单个分类模型进行热力图可视化及特征可视化,得到了不同网络模型关联的特征区域不一样的结论.然后在此基础上分别设计特征拼接、特征融合加特征拼接及融合投票方法将不同模型特征进行融合,得到3种新的融合模型.实验结果表明,本文方法在Kaggle数据集上的识别准确率高于VGG-16、VGG-19、ResNet-50、DenseNet-201模型.
推荐文章
利用多光谱遥感图像融合的机场识别方法
图像融合
光谱特征
结构特征
目标识别
一种基于多尺度语义分析的图像识别方法
图像识别
语义分析
多尺度
支持向量机
基于多特征融合的医学图像识别研究
特征提取
数据融合
图像识别
医学图像
基于图像融合技术的运动目标图像识别研究
图像融合
运动目标图像识别
特征提取
小波降噪
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 多感知兴趣区域特征融合的图像识别方法
来源期刊 智能系统学报 学科
关键词 深度学习 图像识别 迁移学习 特征融合 集成学习 特征提取 CAM可视化 视觉组网络模型 残差网络模型
年,卷(期) 2021,(2) 所属期刊栏目 机器感知与模式识别|Machine Perception and Pattern Recognition
研究方向 页码范围 263-270
页数 8页 分类号 TP311
字数 语种 中文
DOI 10.11992/tis.201906032
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (290)
共引文献  (401)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1968(2)
  • 参考文献(0)
  • 二级参考文献(2)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1974(2)
  • 参考文献(0)
  • 二级参考文献(2)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(3)
  • 参考文献(0)
  • 二级参考文献(3)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(2)
  • 参考文献(0)
  • 二级参考文献(2)
1984(2)
  • 参考文献(0)
  • 二级参考文献(2)
1985(2)
  • 参考文献(0)
  • 二级参考文献(2)
1986(4)
  • 参考文献(0)
  • 二级参考文献(4)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(3)
  • 参考文献(0)
  • 二级参考文献(3)
1989(4)
  • 参考文献(0)
  • 二级参考文献(4)
1990(5)
  • 参考文献(0)
  • 二级参考文献(5)
1991(3)
  • 参考文献(0)
  • 二级参考文献(3)
1992(4)
  • 参考文献(0)
  • 二级参考文献(4)
1993(6)
  • 参考文献(0)
  • 二级参考文献(6)
1994(6)
  • 参考文献(0)
  • 二级参考文献(6)
1995(4)
  • 参考文献(0)
  • 二级参考文献(4)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(5)
  • 参考文献(0)
  • 二级参考文献(5)
1998(11)
  • 参考文献(0)
  • 二级参考文献(11)
1999(7)
  • 参考文献(0)
  • 二级参考文献(7)
2000(5)
  • 参考文献(0)
  • 二级参考文献(5)
2001(7)
  • 参考文献(1)
  • 二级参考文献(6)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(6)
  • 参考文献(1)
  • 二级参考文献(5)
2005(7)
  • 参考文献(0)
  • 二级参考文献(7)
2006(8)
  • 参考文献(0)
  • 二级参考文献(8)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(5)
  • 参考文献(1)
  • 二级参考文献(4)
2010(9)
  • 参考文献(0)
  • 二级参考文献(9)
2011(7)
  • 参考文献(0)
  • 二级参考文献(7)
2012(15)
  • 参考文献(1)
  • 二级参考文献(14)
2013(24)
  • 参考文献(0)
  • 二级参考文献(24)
2014(15)
  • 参考文献(4)
  • 二级参考文献(11)
2015(14)
  • 参考文献(0)
  • 二级参考文献(14)
2016(25)
  • 参考文献(1)
  • 二级参考文献(24)
2017(23)
  • 参考文献(2)
  • 二级参考文献(21)
2018(32)
  • 参考文献(0)
  • 二级参考文献(32)
2019(8)
  • 参考文献(4)
  • 二级参考文献(4)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
图像识别
迁移学习
特征融合
集成学习
特征提取
CAM可视化
视觉组网络模型
残差网络模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能系统学报
双月刊
1673-4785
23-1538/TP
大16开
哈尔滨市南岗区南通大街145-1号楼
2006
chi
出版文献量(篇)
2770
总下载数(次)
11
总被引数(次)
12401
论文1v1指导