基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统的基于CNN的方法在对低分辨率图像进行重构处理过程中,并未将图像中的低频结构信息和高频细节信息进行区别处理,且网络的层与层之间缺乏信息交流,从而造成高分辨率重建图像结果中出现信息缺失.为获取更多图像各层次特征的结构与细节信息,本文构建了基于小波域的残差密集网络(WRDSR).该网络在二维离散小波变换形成的小波域内,利用密集连接和残差连接对图像不同频率的信息进行充分提取后,将融合后的特征输入到亚像素卷积层生成高分辨率图像的小波子带图像,最后通过二维离散小波逆变换生成高分辨率图像.与Bicubic、SRCNN、VDSR、LapSRN、DWSR、SDSR等算法相比,WRDSR在评价指标PSNR/SSIM上平均提高了2.824 dB/0.0595、0.747 dB/0.0168、0.016 dB/0.0024、0.025 dB/0.0043、0.21 dB/0.0047和0.20 dB/0.0057,在更高效地利用原始图像信息的同时,解决了信息缺失的问题,使得重建图像的纹理更清晰,细节更丰富,视觉效果更佳.
推荐文章
基于小波域HMT模型的序列图像超分辨率重建
超分辨率重建
序列图像
小波变换
隐马尔可夫树
基于深度学习的辐射图像超分辨率重建方法
辐射图像
超分辨率重建
深度学习
采用稀疏表示和小波变换的超分辨率重建算法
图像处理
超分辨率
稀疏表示
局部线性嵌入
小波变换
基于MAP算法的图像超分辨率重建
超分辨率
图像重建
最大后验概率
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于小波域的图像超分辨率重建方法
来源期刊 液晶与显示 学科 工学
关键词 图像超分辨率重建 小波域 密集连接 残差网络
年,卷(期) 2021,(2) 所属期刊栏目 图像处理
研究方向 页码范围 317-326
页数 10页 分类号 TP394.41
字数 语种 中文
DOI 10.37188/CJLCD.2020-0101
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (123)
共引文献  (17)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1964(1)
  • 参考文献(1)
  • 二级参考文献(0)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(5)
  • 参考文献(1)
  • 二级参考文献(4)
2005(6)
  • 参考文献(0)
  • 二级参考文献(6)
2006(7)
  • 参考文献(0)
  • 二级参考文献(7)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(8)
  • 参考文献(0)
  • 二级参考文献(8)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(9)
  • 参考文献(0)
  • 二级参考文献(9)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(8)
  • 参考文献(1)
  • 二级参考文献(7)
2013(10)
  • 参考文献(0)
  • 二级参考文献(10)
2014(11)
  • 参考文献(0)
  • 二级参考文献(11)
2015(12)
  • 参考文献(1)
  • 二级参考文献(11)
2016(14)
  • 参考文献(1)
  • 二级参考文献(13)
2017(7)
  • 参考文献(0)
  • 二级参考文献(7)
2018(7)
  • 参考文献(4)
  • 二级参考文献(3)
2019(4)
  • 参考文献(2)
  • 二级参考文献(2)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
图像超分辨率重建
小波域
密集连接
残差网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
液晶与显示
月刊
1007-2780
22-1259/O4
大16开
长春市东南湖大路3888号
12-203
1986
chi
出版文献量(篇)
3141
总下载数(次)
7
总被引数(次)
21631
论文1v1指导