基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了解决传统的相关滤波跟踪算法在复杂环境中容易跟踪失败的问题,本文提出时间驱动的异常学习相关滤波器,旨在提高模型在复杂环境下的适应性,实现安全有效的目标跟踪.通过引入结合异常学习的时间正则项,该模型不仅可以结合滤波器响应相似度和时间域特征搜索到目标,达到抑制异常的效果,还可以提高外观模型在时域中的鲁棒性,缓解时间滤波器退化.另外,本文采用交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)算法实现模型的优化过程,大大减少模型的计算复杂度.大量的实验结果证实了所提出的跟踪算法性能的优越性.
推荐文章
一种基于多相关滤波器组合的目标跟踪方法
目标跟踪
相关滤波
尺度评估
模型自适应更新
基于遗传粒子滤波器的运动目标实时跟踪
粒子滤波器
遗传算法
自适应特征选择
跟踪
boosting算法
结合Kalman滤波器的SIFT目标跟踪算法
尺度不变特征变换算法
卡尔曼滤波
目标识别
特征点提取
基于t-分布粒子滤波器的目标跟踪
目标跟踪
贝叶斯跟踪
非线性非高斯随机系统
序列重要性采样
t-分布粒子滤波器
ECME算法
无色卡尔曼滤波
自助式粒子滤波器
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 时间驱动的异常学习相关滤波器的目标跟踪
来源期刊 信号处理 学科 工学
关键词 时间正则化 响应相似度 异常学习 目标跟踪
年,卷(期) 2021,(1) 所属期刊栏目 知识驱动下智能信号处理与分析专题
研究方向 页码范围 28-39
页数 12页 分类号 TP391
字数 语种 中文
DOI 10.16798/j.issn.1003-0530.2021.01.004
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (73)
共引文献  (37)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1958(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(7)
  • 参考文献(0)
  • 二级参考文献(7)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(6)
  • 参考文献(0)
  • 二级参考文献(6)
2015(8)
  • 参考文献(2)
  • 二级参考文献(6)
2016(2)
  • 参考文献(1)
  • 二级参考文献(1)
2017(2)
  • 参考文献(1)
  • 二级参考文献(1)
2018(5)
  • 参考文献(1)
  • 二级参考文献(4)
2019(4)
  • 参考文献(2)
  • 二级参考文献(2)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
时间正则化
响应相似度
异常学习
目标跟踪
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信号处理
月刊
1003-0530
11-2406/TN
大16开
北京鼓楼西大街41号
18-143
1985
chi
出版文献量(篇)
5053
总下载数(次)
13
总被引数(次)
32728
论文1v1指导