作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高柔性负载抓握机器人的故障检测能力,提出基于神经网络技术的机器人并发故障自动诊断方法.运用高分辨的智能传感器信息识别技术,结合刚度和强度等机械结构特征分析,构建柔性负载抓握机器人的故障信息采集模型,采用变刚度原理,提取柔性负载抓握机器人的振荡信息特征,通过谱特征检测和动态信息融合进行柔性负载抓握机器人的故障信息的多分辨融合和特征聚类处理.通过分析故障样本信息数据参数的估计值,对信息数据进行重组,根据采样信息的差异性对故障类别进行初步判断和识别.采用BP神经网络技术,通过特征分布函数进行故障特征提取,进行机器人并发故障的优化诊断和自适应学习,提高机器人并发故障的有效检测和识别能力.仿真结果表明,采用该方法进行机器人并发故障诊断的自适应性较好,特征辨识能力较强,具有很好的故障监测和模式识别能力.
推荐文章
基于神经网络观测器的机器人故障诊断方法研究
径向基函数
神经网络观测器
机器人系统
故障诊断
基于集成神经网络的深海机器人故障诊断研究
深海机器人
故障诊断
神经网络
模糊神经网络技术及其在机器人中的应用
神经网络
机器人
模糊
人工智能技术
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于神经网络技术的机器人并发故障自动诊断方法
来源期刊 自动化与仪器仪表 学科
关键词 BP神经网络技术 机器人 并发故障 自动诊断 检测
年,卷(期) 2021,(2) 所属期刊栏目 理论创新|THEORETICAL INNOVATION
研究方向 页码范围 57-60
页数 4页 分类号 TP272
字数 语种 中文
DOI 10.14016/j.cnki.1001-9227.2021.02.057
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (143)
共引文献  (36)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1960(2)
  • 参考文献(0)
  • 二级参考文献(2)
1961(1)
  • 参考文献(0)
  • 二级参考文献(1)
1965(1)
  • 参考文献(0)
  • 二级参考文献(1)
1968(2)
  • 参考文献(0)
  • 二级参考文献(2)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
1971(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(2)
  • 参考文献(0)
  • 二级参考文献(2)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(6)
  • 参考文献(0)
  • 二级参考文献(6)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(14)
  • 参考文献(0)
  • 二级参考文献(14)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(13)
  • 参考文献(0)
  • 二级参考文献(13)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(11)
  • 参考文献(1)
  • 二级参考文献(10)
2013(7)
  • 参考文献(0)
  • 二级参考文献(7)
2014(9)
  • 参考文献(0)
  • 二级参考文献(9)
2015(12)
  • 参考文献(2)
  • 二级参考文献(10)
2016(13)
  • 参考文献(2)
  • 二级参考文献(11)
2017(11)
  • 参考文献(4)
  • 二级参考文献(7)
2018(6)
  • 参考文献(3)
  • 二级参考文献(3)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
BP神经网络技术
机器人
并发故障
自动诊断
检测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
自动化与仪器仪表
月刊
1001-9227
50-1066/TP
大16开
重庆市渝北区人和杨柳路2号B区
78-8
1981
chi
出版文献量(篇)
9657
总下载数(次)
37
总被引数(次)
30777
论文1v1指导