基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在利用卷积神经网络模型对短时交通拥堵情况等预测场景进行预测时,由于模型的卷积池化操作过程会丢失部分数据,使得目标位置的信息出现丢失及特征的分辨率持续下降,导致模型的预测能力降低.针对此,本文提出一种空洞-稠密神经网络模型.首先,利用空洞卷积用较少的网络参数获取更大感受野的特点,充分提取出复杂多变的数据时空特征.其次,通过下采样及稠密网络的等值映射,解决参数在神经网络层数增加过程出现退化的问题.最后,取实际的城市道路平均车速数据块对网络结构的有效性进行验证.结果表明:同卷积神经网络模型相比,该网络结构预测平均绝对误差降低3%?23%.
推荐文章
基于深度学习的交通拥堵预测模型研究
交通拥堵
预测模型
深度学习
自编码网络
Softmax回归
基于复杂网络的路网交通拥堵评估仿真模型
复杂网络
交通网络
拥堵
仿真
路段阻抗
基于多指标模糊综合评价的交通拥堵预测与评估
交通拥堵
多指标模糊综合评价
因素指标
熵值法
梯形隶属度函数
基于PSO-BP神经网络的终端区拥堵等级预测模型
空中交通
终端区
拥堵等级预测
粒子群算法
BP神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于空洞-稠密网络的交通拥堵预测模型
来源期刊 上海交通大学学报 学科
关键词 空洞-稠密网络 时空特征 卷积神经网络 短时交通拥堵预测
年,卷(期) 2021,(2) 所属期刊栏目
研究方向 页码范围 124-130
页数 7页 分类号 TP391|U495
字数 语种 中文
DOI 10.16183/j.cnki.jsjtu.2020.99.009
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (17)
共引文献  (20)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2016(5)
  • 参考文献(0)
  • 二级参考文献(5)
2017(4)
  • 参考文献(1)
  • 二级参考文献(3)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(5)
  • 参考文献(5)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
空洞-稠密网络
时空特征
卷积神经网络
短时交通拥堵预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
上海交通大学学报
月刊
1006-2467
31-1466/U
大16开
上海市华山路1954号
4-338
1956
chi
出版文献量(篇)
8303
总下载数(次)
20
总被引数(次)
98140
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导