基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
With the rising of modern data science, data-driven turbulence modeling with the aid of machine learn- ing algorithms is becoming a new promising field. Many approaches are able to achieve better Reynolds stress prediction, with much lower modeling error ( ?M ), than traditional Reynolds-averaged Navier-Stokes (RANS) models, but they still suffer from numerical error and stability issues when the mean velocity fields are estimated by solving RANS equations with the predicted Reynolds stresses. This fact illustrates that the error of solving the RANS equations ( ?P ) is also very important for a RANS simulation. In the present work, the error ?P is studied separately by using the Reynolds stresses obtained from direct nu- merical simulation (DNS)/highly resolved large-eddy simulation to minimize the modeling error ?M , and the sources of ?P are derived mathematically. For the implementations with known Reynolds stresses solely, we suggest to run an auxiliary RANS simulation to make a first guess on νt? and S i 0j . With around 10 iterations, the error of the streamwise velocity component could be reduced by about one-order of magnitude in flow over periodic hills. The present work is not to develop a new RANS model, but to clarify the facts that obtaining mean field with known Reynolds stresses is nontrivial and that the non- linear part of the Reynolds stresses is very important in flow problems with separations. The proposed approach to reduce ?P may be very useful for the a posteriori applications of the data-driven turbulence models.
推荐文章
Test the topographic steady state in an active mountain belt
Taiwan
Uplift
Denudation
River profile
Sediment yield
In-situ 10Be
State of rare earth elements in the rare earth deposits of Northwest Guizhou, China
Kaolinite
Clay rocks
Rare earth deposits
Element existence state
Information extraction
Northwest Guizhou Province
基于Mean Shift的红外目标自动跟踪方法
红外目标
形心定位
自动跟踪
Mean Shift
一种MEAN SHIFT跟踪改进算法研究
跟踪
Mean
shift
分块
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Computing mean fields with known Reynolds stresses at steady state
来源期刊 力学快报(英文版) 学科
关键词
年,卷(期) 2021,(3) 所属期刊栏目 Fluid Mechanics
研究方向 页码范围 137-145
页数 9页 分类号
字数 语种 英文
DOI 10.3969/j.issn.2095-0349.2021.03.004
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (23)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1945(1)
  • 参考文献(1)
  • 二级参考文献(0)
1972(1)
  • 参考文献(1)
  • 二级参考文献(0)
1975(2)
  • 参考文献(2)
  • 二级参考文献(0)
1988(1)
  • 参考文献(1)
  • 二级参考文献(0)
1991(2)
  • 参考文献(2)
  • 二级参考文献(0)
1993(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(4)
  • 参考文献(4)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(4)
  • 参考文献(4)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
力学快报(英文)
双月刊
2095-0349
11-5991/O3
16开
北京中关村北四环西路15号
82-776
2011
eng
出版文献量(篇)
659
总下载数(次)
1
总被引数(次)
581
论文1v1指导