基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
深度信息已被证明在显著性物体检测中是一个实用信息,但是深度信息和RGB信息如何更好地实现互补从而达到更高的性能仍是一个值得探究的事情.为此,本文提出一种基于深度图像增益的RGB-D显著性物体检测方法.在双分支的网络结构中增加一个增益子网,采用显著图作差的方法获得深度图片为显著性检测带来的增益,作为增益子网预训练的伪GT.三分支网络分别获取RGB特征、深度特征和深度增益信息,最终将三分支的特征进行融合得到最终的显著性物体检测的结果,增益信息为双分支特征融合提供融合依据.基于深度图像增益的显著性物体检测实验结果表明,该方法得到的显著性物体前景物体更加突出,在多个实验数据集上也有着更优秀的表现.
推荐文章
基于空-频域混合分析的RGB-D数据视觉显著性检测方法
视觉显著性
深度信息
超复数傅里叶变换
环境理解
基于背景原型对比度的显著性物体检测
视觉关注
背景原型
视觉显著度
多尺度卷积递归神经网络的RGB-D物体识别
多尺度
3D曲面法线
递归神经网络
RGB-D物体识别
基于RGB-D的深度图像修复算法研究
Kinect
深度数据
图像处理
空洞填充
噪声滤波
图像修复
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度图像增益的RGB-D显著性物体检测
来源期刊 计算机与现代化 学科
关键词 深度信息 显著性物体检测 图像增益
年,卷(期) 2021,(5) 所属期刊栏目 图像处理|IMAGE PROCESSING
研究方向 页码范围 26-30,37
页数 6页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.1006-2475.2021.05.005
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (29)
共引文献  (1)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(4)
  • 参考文献(1)
  • 二级参考文献(3)
2015(5)
  • 参考文献(1)
  • 二级参考文献(4)
2016(2)
  • 参考文献(1)
  • 二级参考文献(1)
2017(5)
  • 参考文献(3)
  • 二级参考文献(2)
2018(4)
  • 参考文献(1)
  • 二级参考文献(3)
2019(4)
  • 参考文献(2)
  • 二级参考文献(2)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度信息
显著性物体检测
图像增益
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与现代化
月刊
1006-2475
36-1137/TP
大16开
南昌市井冈山大道1416号
44-121
1985
chi
出版文献量(篇)
9036
总下载数(次)
25
总被引数(次)
56782
论文1v1指导