基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对现代化养殖业无人化、智能化的需求,以目标检测网络YOLOv2为基础,提出了一种基于深度学习提取时空特征的生猪动作识别与定位的方法.对待检测视频关键帧中的生猪空间位置信息与视频流时序动作特征进行检测,采用通道注意力模块将这2种特征进行合理且平滑的特征融合,实现了一个端到端的动作识别网络,可以直接从视频序列中预测得到关键帧的包围框和动作分类概率.通过对某生猪养殖场群养栏监控视频进行训练和测试,研究了通道注意力模块和网络输入视频帧采样间隔对检测效果的影响,验证了三维卷积神经网络在生猪动作识别与定位中的有效性.
推荐文章
人体动作识别中基于HTM架构的时空特征提取方法
人体动作识别
时空特征提取
层次时间记忆
支持向量机
基于时空图像分割和交互区域检测的人体动作识别方法
人体动作识别
时空图像分割
交互区域
局部约束线性编码
支持向量机
基于混合特征的人体动作识别改进算法
动作识别
剪影特征
光流特征
留一法
基于HOG特征协方差矩阵的动作识别算法
动作识别
计算机视觉
图像处理
模式识别
HOG特征
协方差矩阵
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于时空特征的生猪动作识别
来源期刊 应用科技 学科
关键词 时空特征 生猪动作识别 YOLOv2 深度学习 视频流 通道注意力模块 特征融合 三维卷积神经网络
年,卷(期) 2021,(4) 所属期刊栏目 计算机技术与应用
研究方向 页码范围 80-84
页数 5页 分类号 TP18
字数 语种 中文
DOI 10.11991/yykj.202010004
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (40)
共引文献  (12)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(9)
  • 参考文献(0)
  • 二级参考文献(9)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(4)
  • 参考文献(1)
  • 二级参考文献(3)
2016(2)
  • 参考文献(1)
  • 二级参考文献(1)
2017(4)
  • 参考文献(1)
  • 二级参考文献(3)
2018(12)
  • 参考文献(3)
  • 二级参考文献(9)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(3)
  • 参考文献(3)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
时空特征
生猪动作识别
YOLOv2
深度学习
视频流
通道注意力模块
特征融合
三维卷积神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
应用科技
双月刊
1009-671X
23-1191/U
大16开
哈尔滨市南通大街145号1号楼
14-160
1974
chi
出版文献量(篇)
4861
总下载数(次)
7
总被引数(次)
21528
论文1v1指导