基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统和声算法收敛速度慢和搜索精度低等固有缺点,提出一种改进的自适应全局最优和声搜索算法.在即兴创作方案中,带宽由当前和声里的最优和声变量和最差和声变量之差表示,使得带宽具有针对具体情况的自适应能力,并且每次保存最优和声中一个随机和声变量.在产生的随机数大于和声记忆库存储考虑概率时,利用种群内差分随机生成一个和声变量.为了提高和声搜索算法的搜索能力,在即兴创作结束后产生一个新的和声的同时,再从当前种群中的最小和声到最大和声之间随机产生一个和声,然后将两个新产生和声中误差小的和声进入更新和声记忆库阶段.将所提出的算法与3个改进和声搜索算法在13个测试函数上进行对比.试验结果表明,提出的改进算法具有更好的全局搜索能力和收敛速度.
推荐文章
混沌的自适应和声搜索算法
和声搜索算法
自适应搜索
混沌
轮盘赌选择自适应和声搜索算法
和声搜索
轮盘赌选择
适应度方差
自适应
一种改进自适应参数的和声搜索算法
和声搜索算法
柯西
正态分布随机数
自适应
标准优化算法测试函数
基于改进全局和声搜索算法LSSVM的短期电力负荷预测
电力系统
和声搜索算法
最小二乘支持向量机
负荷预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于全局最优的自适应和声搜索算法
来源期刊 山东大学学报(工学版) 学科
关键词 和声搜索算法 全局最优 自适应 差分 测试函数
年,卷(期) 2021,(2) 所属期刊栏目 机器学习与数据挖掘|Machine Learning&Data Mining
研究方向 页码范围 47-56
页数 10页 分类号 TP391
字数 语种 中文
DOI 10.6040/j.issn.1672-3961.0.2020.395
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(2)
  • 参考文献(2)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(3)
  • 参考文献(3)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
和声搜索算法
全局最优
自适应
差分
测试函数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
山东大学学报(工学版)
双月刊
1672-3961
37-1391/T
大16开
济南市经十路17923号
24-221
1956
chi
出版文献量(篇)
3095
总下载数(次)
14
总被引数(次)
24236
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导