基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于深度学习的超分辨率重建方法多数采用已知的模糊核训练网络,在实际应用中模糊核通常未知,在此情况下这类方法的重建效果将显著下降.零样本超分方法利用图像自身构建训练集,能够改善由于模糊核未知所带来的性能下降,但由于仅利用图像自身信息,对重建效果的提升有一定的局限性.本文提出增强少样本学习方法解决模糊核未知时的超分重建问题,一方面,选取与低分图像类似的示例图像构建训练集;另一方面,扩大网络规模并优化网络结构.在U CMerced_Lan-dUse数据集上的实验结果表明,与零样本超分方法相比,本文所提方法具有更好的超分重建效果.
推荐文章
基于插值的遥感图像超分辨率重建
插值
遥感
亚像素
超分辨率重建
基于SVM预分类学习的图像超分辨率重建算法
超分辨率重建
支持向量机(SVM)
颜色特征
样本学习
基于深度学习的图像超分辨率重建技术的研究
人工智能
深度学习
超分辨率
制造工艺
基于深度学习的单图像超分辨率重建研究综述
单图像超分辨率重建
深度学习
密集卷积网络
生成式对抗网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于少样本学习的遥感图像超分辨率重建算法
来源期刊 自动化技术与应用 学科
关键词 遥感图像 深度学习 增强少样本超分 盲超分
年,卷(期) 2021,(6) 所属期刊栏目 控制理论与应用|Control Theory and Applications
研究方向 页码范围 1-5
页数 5页 分类号 TP751
字数 语种 中文
DOI 10.3969/j.issn.1003-7241.2021.06.001
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (71)
共引文献  (10)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1964(2)
  • 参考文献(1)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(15)
  • 参考文献(0)
  • 二级参考文献(15)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(7)
  • 参考文献(0)
  • 二级参考文献(7)
2015(3)
  • 参考文献(2)
  • 二级参考文献(1)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(6)
  • 参考文献(1)
  • 二级参考文献(5)
2018(2)
  • 参考文献(1)
  • 二级参考文献(1)
2019(8)
  • 参考文献(0)
  • 二级参考文献(8)
2020(4)
  • 参考文献(0)
  • 二级参考文献(4)
2021(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(2)
  • 参考文献(2)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
遥感图像
深度学习
增强少样本超分
盲超分
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
自动化技术与应用
月刊
1003-7241
23-1474/TP
大16开
哈尔滨市开发区汉水路165号
14-37
1982
chi
出版文献量(篇)
8131
总下载数(次)
24
总被引数(次)
36824
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导