基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着深度学习的发展,尤其是随着多层神经网络(MLP)、深度神经网络(DNN)、卷积神经网络(CNN)等网络的出现,其在多个领域得到广泛应用,如视觉识别、语音识别、自然语言处理等领域.在2019年的美密会上提出利用单差分深度残差网络区分器进行密钥恢复攻击的方法,将深度学习的应用扩展到密码算法分析领域.利用多差分残差网络区分器进行密钥恢复攻击,该方法可有效减少数据复杂度,并增加攻击轮数.以RC516的攻击为例,计算复杂度和数据复杂度分别减少为后者的1/12,攻击轮数由11个半轮增加到了12个半轮.
推荐文章
基于深度神经网络的少样本学习综述
少样本学习
数据增强
迁移学习
度量学习
元学习
小波神经网络多传感器信息融合在AUV深度测量中的应用
自主式水下航行器(AUV)
深度传感器
多传感器信息融合
小波神经网络
测量精度
基于深度学习神经网络的孤立词语音识别的研究
语音识别
人工神经网络
深度学习
自编码器
规整网络
基于NWP和深度学习神经网络短期风功率预测
风功率预测
深度学习神经网络
数值天气预报
建立转换模型
概率密度
案例分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的多差分神经网络区分器及其应用
来源期刊 信息工程大学学报 学科
关键词 深度学习 密码算法分析 差分分析 多差分神经网络区分器 RC5
年,卷(期) 2021,(3) 所属期刊栏目 网络空间安全
研究方向 页码范围 347-350
页数 4页 分类号 TP309
字数 语种 中文
DOI 10.3969/j.issn.1671-0673.2021.03.015
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
密码算法分析
差分分析
多差分神经网络区分器
RC5
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息工程大学学报
双月刊
1671-0673
41-1196/N
大16开
郑州市科学大道62号
2000
chi
出版文献量(篇)
2792
总下载数(次)
2
总被引数(次)
9088
论文1v1指导