基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对复杂场景中光照变化、目标自身尺度变化等引起的目标丢失或误跟踪等问题,提出一种尺度和光照自适应的结构化多目标跟踪方法.利用多尺度Retinex算法对序列图像进行预处理;通过SPOT算法对多目标进行跟踪,以确定新一帧中各目标最优位置;采用判别型尺度空间跟踪算法训练尺度滤波器,以新一帧中各目标最优位置为中心,利用尺度滤波器的最大值确定新一帧中各目标的最优尺度;采用随机梯度下降法并结合双线性插值更新特征分类器的权重.实验结果表明,提出的多目标跟踪算法在应对场景光照和目标尺度变化等方面,具有良好的鲁棒性和准确性.
推荐文章
基于基础颜色特征的自适应尺度的多目标跟踪算法
基础颜色特征
自适应尺度因子
多目标跟踪
颜色命名过程
主成分分析
基于自适应差分的多目标检测和跟踪
差分图像
自适应阈值
目标检测
多目标跟踪
尺度自适应在线鲁棒目标跟踪
在线boosting
半监督学习
尺度自适应
权重图像
目标跟踪
基于相关滤波的尺度自适应目标跟踪
尺度计算
目标跟踪
相关滤波
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 尺度和光照自适应的结构化多目标跟踪
来源期刊 电光与控制 学科
关键词 Retinex算法 判别型尺度空间跟踪算法 随机梯度下降法 双线性插值
年,卷(期) 2021,(4) 所属期刊栏目 学术研究|Academic Research
研究方向 页码范围 29-33
页数 5页 分类号 TP391.41
字数 语种 中文
DOI 10.3969/j.issn.1671-637X.2021.04.007
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (147)
共引文献  (113)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(2)
  • 参考文献(0)
  • 二级参考文献(2)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(8)
  • 参考文献(0)
  • 二级参考文献(8)
2009(9)
  • 参考文献(0)
  • 二级参考文献(9)
2010(13)
  • 参考文献(0)
  • 二级参考文献(13)
2011(12)
  • 参考文献(0)
  • 二级参考文献(12)
2012(14)
  • 参考文献(0)
  • 二级参考文献(14)
2013(10)
  • 参考文献(0)
  • 二级参考文献(10)
2014(10)
  • 参考文献(2)
  • 二级参考文献(8)
2015(16)
  • 参考文献(1)
  • 二级参考文献(15)
2016(11)
  • 参考文献(2)
  • 二级参考文献(9)
2017(6)
  • 参考文献(2)
  • 二级参考文献(4)
2018(3)
  • 参考文献(1)
  • 二级参考文献(2)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Retinex算法
判别型尺度空间跟踪算法
随机梯度下降法
双线性插值
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电光与控制
月刊
1671-637X
41-1227/TN
大16开
河南省洛阳市017信箱16分箱
1970
chi
出版文献量(篇)
4517
总下载数(次)
11
相关基金
江苏省自然科学基金
英文译名:Natural Science Foundation of Jiangsu Province
官方网址:http://www.jsnsf.gov.cn/News.aspx?a=37
项目类型:
学科类型:
论文1v1指导