基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对长时目标跟踪所面临的目标被遮挡、出视野等常常会导致跟踪漂移或丢失的问题,基于MDNet提出一种深度长时目标跟踪算法(long-term object tracking based on MDNet,LT-MDNet).首先,引入了一种改进的收缩损失函数,以解决模型训练时正负样本不均衡的问题;其次,设计了一种高置信度保留样本池,对在线跟踪时的每一帧的有效并且置信度最高结果进行保留,并在池满时替换最低置信度的保留样本;最后,在模型检测到跟踪失败或连续跟踪帧数达到特定阈值时,利用保留样本池进行在线训练更新模型,从而使模型在应对长时跟踪时保持鲁棒和高效.实验结果表明,LT-MDNet在跟踪精度和成功率上都展现了极强的竞争力,并且在目标被遮挡、出视野等情况下保持了优越的跟踪性能和可靠性.
推荐文章
一种基于背景模型的运动目标检测与跟踪算法
背景模型
混合高斯模型
Kalman滤波
运动目标检测与跟踪
一种基于跟踪微分器的机动目标跟踪算法
控制理论
目标跟踪
运动预测
跟踪微分器
SSDA算法
一种适用于离岗检测的目标跟踪算法
目标跟踪
均值漂移
粒子滤波
混合特征
离岗检测
一种基于弹道模型的机动目标跟踪算法
弹道模型
跃升俯冲
目标跟踪
扩展卡尔曼滤波
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于深度学习目标检测的长时目标跟踪算法
来源期刊 智能系统学报 学科
关键词 目标跟踪 长时跟踪 神经网络 卷积特征 类不均衡问题 损失函数 特征提取 深度学习
年,卷(期) 2021,(3) 所属期刊栏目 机器感知与模式识别|Machine Perception and Pattern Recognition
研究方向 页码范围 433-441
页数 9页 分类号 TP391.4
字数 语种 中文
DOI 10.11992/tis.201910029
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (5)
共引文献  (0)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(2)
  • 参考文献(2)
  • 二级参考文献(0)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(5)
  • 参考文献(3)
  • 二级参考文献(2)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
目标跟踪
长时跟踪
神经网络
卷积特征
类不均衡问题
损失函数
特征提取
深度学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能系统学报
双月刊
1673-4785
23-1538/TP
大16开
哈尔滨市南岗区南通大街145-1号楼
2006
chi
出版文献量(篇)
2770
总下载数(次)
11
总被引数(次)
12401
论文1v1指导