基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在传统超分辨率图像重建算法中,图像的梯度、纹理结构等特征通常是由人工设计的规则提取的,对于结构复杂、内容丰富的图像,这样提取到的特征不能精确地表达图像的全部信息,对图像的边缘和局部细节信息会造成缺失.而且在图像训练过程中,还会出现低分辨率(LR)和高分辨率(HR)图像特征图数量不一致、特征匹配度较低的问题.因此,如何提取表达能力更强的特征作为源图像的精确表示和训练过程中提高图像特征匹配度对图像的超分辨率重建至关重要.针对上述问题,提出了一种基于PCANet模型的超分辨率图像重建算法.首先通过具有高斯内核函数的PCANet模型提取图像的深层次特征,并且加入稀疏优化算法,对输出的特征映射矩阵迭代优化,得到其最佳投影矩阵,有效提升了特征映射的鲁棒性.然后利用学习获得的LR滤波器将提取到的图像的深度学习特征分解为多个稀疏特征,使用ADMM算法和SA-ADMM算法迭代更新得到其最优解以后,结合LR图像的稀疏特征和映射函数估计出HR图像的稀疏特征表示,最后和相应的HR滤波器进行卷积求和得到最终的重建图像.实验结果表明,该方法使重建图像的细节信息更好地保留,图像的边缘纹理更加清晰,客观评价指标平均PSNR值提高了0.21 dB以上,有效提升了图像重建的质量.
推荐文章
基于稀疏表示的图像超分辨率重建算法
超分辨率重建
稀疏表示
L1范数优化
字典学习
粒子群优化算法
特征提取算子
基于稀疏表示的图像超分辨率重建算法设计
超分辨率重建
稀疏表示
字典学习
图像
基于稀疏表示的自适应图像超分辨率重建算法
超分辨率
自适应正则化
联合字典
融合低秩和稀疏表示的图像超分辨率重建算法
超分辨率重建
低秩矩阵恢复
稀疏重建
噪声
字典学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 利用子空间稀疏特征的超分辨率图像重建算法
来源期刊 计算机工程与应用 学科 工学
关键词 PCANet模型 稀疏优化 SA-ADMM算法 稀疏特征 超分辨率图像重建
年,卷(期) 2021,(5) 所属期刊栏目 图形图像处理
研究方向 页码范围 173-182
页数 10页 分类号 TP391
字数 语种 中文
DOI 10.3778/j.issn.1002-8331.1911-0313
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (47)
共引文献  (15)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(4)
  • 参考文献(2)
  • 二级参考文献(2)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(6)
  • 参考文献(1)
  • 二级参考文献(5)
2011(9)
  • 参考文献(2)
  • 二级参考文献(7)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(9)
  • 参考文献(0)
  • 二级参考文献(9)
2014(7)
  • 参考文献(1)
  • 二级参考文献(6)
2015(5)
  • 参考文献(3)
  • 二级参考文献(2)
2016(5)
  • 参考文献(2)
  • 二级参考文献(3)
2017(4)
  • 参考文献(1)
  • 二级参考文献(3)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
PCANet模型
稀疏优化
SA-ADMM算法
稀疏特征
超分辨率图像重建
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导