基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于蚁群算法在路径规划过程中出现收敛速度慢、易陷入局部最优,且在复杂环境下的寻优能力弱等缺陷,提出了一种适用于机器人路径规划的改进蚁群算法.在预规划路径基础上建立初始信息素矩阵,避免算法前期盲目搜索,提高搜索速度;将改进蚁群算法和A*算法进行有机融合,进一步提高蚁群算法搜索方向性和收敛速度.制定信息素更新规则时引入拐点评价函数,提高搜索路径的光滑性,提高机器人安全性和降低能耗;提出回退策略有效减少蚂蚁死亡数量,提高路径规划方法的鲁棒性.仿真实验表明,在相同的环境下,改进的蚁群算法在机器人路径规划中搜索效率和收敛速度明显优于其他算法.
推荐文章
改进蚁群算法在移动机器人路径规划中的研究
蚁群算法
移动机器人
路径规划
最优路径
基于改进蚁群算法的移动机器人路径规划研究
移动机器人路径规划
新型蚁群算法
数学模型
收敛速度
局部最优
基于改进蚁群算法的机器人路径规划算法
移动机器人
改进蚁群算法
路径规划
基于改进蚁群算法的机器人路径规划
蚁群算法
移动机器人
路径规划
陷阱
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 改进蚁群算法在机器人路径规划上的研究
来源期刊 计算机工程与应用 学科 工学
关键词 蚁群算法 路径规划 启发函数 拐点评价函数
年,卷(期) 2021,(5) 所属期刊栏目 工程与应用
研究方向 页码范围 210-215
页数 6页 分类号 TP242
字数 语种 中文
DOI 10.3778/j.issn.1002-8331.2007-0185
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (136)
共引文献  (68)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(7)
  • 参考文献(0)
  • 二级参考文献(7)
2011(13)
  • 参考文献(0)
  • 二级参考文献(13)
2012(7)
  • 参考文献(0)
  • 二级参考文献(7)
2013(7)
  • 参考文献(0)
  • 二级参考文献(7)
2014(8)
  • 参考文献(1)
  • 二级参考文献(7)
2015(7)
  • 参考文献(1)
  • 二级参考文献(6)
2016(12)
  • 参考文献(0)
  • 二级参考文献(12)
2017(14)
  • 参考文献(1)
  • 二级参考文献(13)
2018(28)
  • 参考文献(1)
  • 二级参考文献(27)
2019(17)
  • 参考文献(3)
  • 二级参考文献(14)
2020(7)
  • 参考文献(5)
  • 二级参考文献(2)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
蚁群算法
路径规划
启发函数
拐点评价函数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导