作者:
原文服务方: 机械传动       
摘要:
传统的蚁群算法在移动机器人路径规划过程中,在加速算法收敛时易陷入局部最优问题,针对此问题提出了一种新型蚁群算法的移动机器人路径规划方法.首先建立了机器人路径规划数学模型,在此基础上对传统的蚁群算法进行了改进,将环境中局部的机器人路径信息引入到蚁群信息素的初始化和路径选择概率中,提高了蚁群算法的收敛速度并防止算法早熟.通过引入交叉操作并对蚁群算法中参数进行调整,避免了算法陷入局部最优.仿真结果表明,所提方法能够明显提高最佳路径搜索能力,整体性能优于传统蚁群算法.
推荐文章
改进蚁群算法在移动机器人路径规划中的研究
蚁群算法
移动机器人
路径规划
最优路径
基于改进蚁群算法的移动机器人路径规划
移动机器人
路径规划
蚁群算法
信息素更新
蚁群算法及其在移动机器人路径规划中的应用
蚁群算法
路径规划
移动机器人
智能计算
改进蚁群算法用于移动机器人路径规划时的研究
蚁群算法
鸟群算法
移动机器人
路径规划
智能算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进蚁群算法的移动机器人路径规划研究
来源期刊 机械传动 学科
关键词 移动机器人路径规划 新型蚁群算法 数学模型 收敛速度 局部最优
年,卷(期) 2016,(7) 所属期刊栏目 理论研究
研究方向 页码范围 58-61
页数 4页 分类号
字数 语种 中文
DOI 10.16578/j.issn.1004.2539.2016.07.012
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 余勇 20 36 3.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (68)
共引文献  (421)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1983(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(4)
  • 参考文献(0)
  • 二级参考文献(4)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(7)
  • 参考文献(0)
  • 二级参考文献(7)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(6)
  • 参考文献(0)
  • 二级参考文献(6)
2003(4)
  • 参考文献(1)
  • 二级参考文献(3)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(6)
  • 参考文献(0)
  • 二级参考文献(6)
2009(6)
  • 参考文献(1)
  • 二级参考文献(5)
2010(6)
  • 参考文献(4)
  • 二级参考文献(2)
2011(5)
  • 参考文献(1)
  • 二级参考文献(4)
2012(4)
  • 参考文献(2)
  • 二级参考文献(2)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
移动机器人路径规划
新型蚁群算法
数学模型
收敛速度
局部最优
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机械传动
月刊
1004-2539
41-1129/TH
大16开
河南省郑州市科学大道149号
1977-01-01
中文
出版文献量(篇)
6089
总下载数(次)
0
总被引数(次)
31469
论文1v1指导