基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
近年来,微电子技术进入到纳电子/集成微系统时代,SIP(System in Package)和SOC(System on Chip)是微系统实现的两种重要技术途径;基于神经网络的深度学习技术在图形图像、计算机视觉和目标识别等方面得以广泛应用.卷积神经网络的深度学习技术在嵌入式平台的小型化、微型化是一项重要研究领域.如何将神经网络轻量化和微系统相结合,达到性能、体积和功耗的最优化平衡是一难点.介绍了一款将SIP技术和基于FPGA的卷积神经网络相结合的微系统实现方案,它以Zynq SOC和FLASH、DDR3存储器为主要组成,利用SIP高密度系统封装技术进行集成,在其中的PL端(FPGA)采用HLS来设计CNN(Convolutional Neural Network,卷积神经网络)中的卷积层和池化层,生成IP核,分时复用构建微系统,设计实现了Micro_VGGNet轻量化模型.测试采用MNIST手写数字数据集作为训练和测试样本,该微系统能够实准确识别手写数字,准确率达到98.1%.体积仅为30 mm×30 mm×1.2 mm,在100 MHz工作频率下,图像处理速度可达到20.65 FPS,功耗仅为2.1 W,实现了轻量化神经网络微系统的多目标平衡(性能、体积和功耗).
推荐文章
基于卷积神经网络的肺炎检测系统
卷积神经网络
胸部X光影像
肺炎诊断
图像预处理
VGG
特征提取
基于FPGA的卷积神经网络设计与实现
卷积神经网络
现场可编程门阵列
阵列处理器
并行性
基于卷积神经网络和Tree-LSTM的微博情感分析
卷积神经网络
注意力机制
长短期记忆神经网络
微博情感分析
语音识别中卷积神经网络的FPGA实现
语音识别
卷积神经网络
现场可编程门阵列
硬件加速
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 卷积神经网络SIP微系统实现
来源期刊 计算机工程与应用 学科 工学
关键词 微系统 系统级封装(SIP) 卷积神经网络(CNN) 数字识别
年,卷(期) 2021,(5) 所属期刊栏目 工程与应用
研究方向 页码范围 216-221
页数 6页 分类号 TP368.2
字数 语种 中文
DOI 10.3778/j.issn.1002-8331.2009-0011
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (44)
共引文献  (4)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(3)
  • 参考文献(0)
  • 二级参考文献(3)
2016(2)
  • 参考文献(0)
  • 二级参考文献(2)
2017(7)
  • 参考文献(1)
  • 二级参考文献(6)
2018(15)
  • 参考文献(1)
  • 二级参考文献(14)
2019(13)
  • 参考文献(6)
  • 二级参考文献(7)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
微系统
系统级封装(SIP)
卷积神经网络(CNN)
数字识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导