基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
依托吉林引松工程开展隧道掘进机(TBM)施工参数预测研究,提出TBM施工数据分段提取算法,提取上升段前30 s的总推进力、刀盘转速、推进速度、刀盘扭矩、刀盘转速电位器设定值、推进速度电位器设定值、贯入度、贯入度指数(FPI)、扭矩切深指数(TPI)9个参数作为输入;通过局部线性嵌入(LLE)完成对上升段数据特征的降维;基于支持向量机回归(SVR)建立TBM施工控制参数(推进速度、刀盘转速)和负载参数(总推进力、刀盘扭矩)预测模型.分析是否结合前一掘进循环的FPI、TPI指数进行预测对预测效果的影响.结果表明,上述方法在推进速度、刀盘转速、总推进力、刀盘扭矩的预测中均取得了较好的预测效果,平均预测绝对百分比误差均小于15%,验证了该预测方法的有效性,该方法可以为TBM现场施工提供指导.
推荐文章
基于支持向量机回归的电力负荷预测研究
结构风险最小化
支持向量机
支持向量回归
电力负荷预测
神经网络
基于支持向量回归机的粮食产量预测研究
支持向量机
回归预测
参数选择
粮食产量
基于支持向量机的非线性预测控制技术
支持向量机
预测控制
非线性建模
非线性控制
基于粒子群支持向量机的海杂波序列回归预测
海杂波
混沌
支持向量机
粒子群
回归预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于局部线性嵌入和支持向量机回归的TBM施工参数预测
来源期刊 浙江大学学报(工学版) 学科
关键词 隧道掘进机(TBM) 施工参数 掘进性能 预测 局部线性嵌入(LLE) 支持向量机回归(SVR)
年,卷(期) 2021,(8) 所属期刊栏目 土木工程、交通工程|Civil Engineering, Traffic Engineering
研究方向 页码范围 1426-1435
页数 10页 分类号 U45
字数 语种 中文
DOI 10.3785/j.issn.1008-973X.2021.08.003
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (64)
共引文献  (102)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1964(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(2)
  • 参考文献(0)
  • 二级参考文献(2)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(7)
  • 参考文献(1)
  • 二级参考文献(6)
2007(7)
  • 参考文献(1)
  • 二级参考文献(6)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(8)
  • 参考文献(1)
  • 二级参考文献(7)
2011(7)
  • 参考文献(1)
  • 二级参考文献(6)
2012(7)
  • 参考文献(0)
  • 二级参考文献(7)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(3)
  • 参考文献(0)
  • 二级参考文献(3)
2016(6)
  • 参考文献(0)
  • 二级参考文献(6)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
隧道掘进机(TBM)
施工参数
掘进性能
预测
局部线性嵌入(LLE)
支持向量机回归(SVR)
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
浙江大学学报(工学版)
月刊
1008-973X
33-1245/T
大16开
杭州市浙大路38号
32-40
1956
chi
出版文献量(篇)
6865
总下载数(次)
6
总被引数(次)
81907
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导