基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
交通预测在智能交通中有着重要的意义和应用.由于交通数据的复杂性和高度的非线性,精确的交通预测的核心挑战在于如何对复杂的空间相关性和时间动态建立模型.在现实生活中,我们发现:1)区域间的空间依赖是动态的;2)时间依赖有日和周的模式,但由于有动态时间变化,它不具有严格周期性.为了解决这两个问题,我们提出了一个新的时空注意力网络(STAN),该模型的主要思想是区域间的动态相似性用一个门控机制学习,长期周期性时间转移现象由一个周期性注意力转移机制来学习,并考虑交通道路、天气状况等外部因素.通过与不同的方法在两个数据集上进行评估,实验结果表明,我们提出的模型有更好的准确性.
推荐文章
基于时空图注意力的短期电力负荷预测方法
电力负荷预测
小世界网络
时空图注意力
门控扩张因果卷积
一种基于自注意力机制的组推荐方法
群组推荐
自注意力机制
协同过滤
深度学习
融合策略
基于注意力时空解耦3D卷积LSTM的视频预测
视频预测
卷积LSTM
注意力机制
时空解耦
重采样
采用循环神经网络的情感分析注意力模型
情感分析
循环神经网络
注意力
长短时记忆
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种时空注意力网络的交通预测模型
来源期刊 小型微型计算机系统 学科
关键词 交通预测 时空数据 注意力机制 神经网络
年,卷(期) 2021,(2) 所属期刊栏目 人工智能与算法研究|Artificial Intelligence and Algorithm Research
研究方向 页码范围 303-307
页数 5页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.1000-1220.2021.02.014
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (28)
共引文献  (25)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(3)
  • 参考文献(2)
  • 二级参考文献(1)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(7)
  • 参考文献(2)
  • 二级参考文献(5)
2017(6)
  • 参考文献(1)
  • 二级参考文献(5)
2018(4)
  • 参考文献(0)
  • 二级参考文献(4)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
交通预测
时空数据
注意力机制
神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
小型微型计算机系统
月刊
1000-1220
21-1106/TP
大16开
辽宁省沈阳市东陵区南屏东路16号
8-108
1980
chi
出版文献量(篇)
11026
总下载数(次)
17
总被引数(次)
83133
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导