基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对电子元件缺陷传统人工检测方法存在劳动量大、检测效率和自动化程度低、成本高等问题,提出一种基于Halcon的视觉检测系统.针对研究对象的特殊性,提出两次采集、两次判断的多特征自动检测方法,并构建验证试验平台;利用CCD相机实时采集元件图像,再对图像进行中值滤波等预处理,降低图形噪声;采用阈值分割、Blob分析的方法对图像缺陷特征进行形态学特征识别和提取,得到判断结果.实验结果表明:该检测方式能快速、准确、高效地提取电子元件缺陷特征;单幅图平均图像处理时间为131 ms,检测平均准确率为95%;另一方面,自动控制系统稳定性强,精度高,单个元件检测周期平均时间为4.7 s,相教于人工检测效率提高了38%,满足工业要求.
推荐文章
基于机器视觉的注塑空瓶缺陷检测系统
机器视觉
数字图像处理技术
图像预处理
图像匹配
融合3D视觉的机器人自主更换变压器熔断器系统
协作机器人
3D视觉
熔断器更换
自主作业
基于机器视觉的FPC表面缺陷智能检测系统
表面缺陷检测系统
机器视觉
柔性印制电路板
自动化检测
基于机器视觉的机加工缺陷检测系统设计
机器视觉
图像处理
缺陷定位
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于机器视觉的网络变压器模块缺陷检测系统研究
来源期刊 机床与液压 学科 工学
关键词 机器视觉 缺陷检测 Blob分析
年,卷(期) 2021,(4) 所属期刊栏目 设计与开发
研究方向 页码范围 89-93
页数 5页 分类号 TP273.5
字数 语种 中文
DOI 10.3969/j.issn.1001-3881.2021.04.018
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (66)
共引文献  (21)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(6)
  • 参考文献(1)
  • 二级参考文献(5)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(9)
  • 参考文献(0)
  • 二级参考文献(9)
2015(6)
  • 参考文献(1)
  • 二级参考文献(5)
2016(7)
  • 参考文献(0)
  • 二级参考文献(7)
2017(8)
  • 参考文献(0)
  • 二级参考文献(8)
2018(8)
  • 参考文献(1)
  • 二级参考文献(7)
2019(4)
  • 参考文献(4)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
机器视觉
缺陷检测
Blob分析
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机床与液压
半月刊
1001-3881
44-1259/TH
大16开
广州市黄埔区茅岗路828号
46-40
1973
chi
出版文献量(篇)
20801
总下载数(次)
44
总被引数(次)
104386
论文1v1指导