基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对现有安全帽检测研究中采用的两阶段检测法存在检测效率偏低,累积误差对精度影响较大的问题,提出一种对安全帽的单阶段检测法.将安全帽和工人头部视为一个整体,将检测目标分为2类,即佩戴安全帽的头部和未佩戴安全帽的头部,同时对2类目标进行检测,避免了冗余的计算步骤及累积误差的影响.同时,针对施工场景安全帽佩戴状态检测特点,对YOLOv3的网络结构、损失函数及先验框尺寸进行改进,提出YOLOv3-C模型.研究结果表明:改进后的YOLOv3-C模型的检测性能大幅提升,在本文建立的样本集中模型的mAP达到93.84%,对安全帽检测平均精度达到97.01%,对工人头部检测平均精度达到90.67%,同时YOLOv3-C对本文的检测场景表现出良好的鲁棒性.
推荐文章
基于Swin Transformer的YOLOv5安全帽佩戴检测方法
安全帽佩戴检测
YOLOv5
Swin Transformer
Ghost
新型跨尺度特征融合
K-means++
基于改进Faster RCNN的安全帽佩戴检测研究
安全帽佩戴检测
FasterRCNN
多尺度训练
在线困难样本挖掘
多部件结合
基于YOLOv3的车辆多目标检测
车辆
多目标检测
Darknet-53网络
YOLOv3
一种基于改进YOLOv3的密集人群检测算法
密集人群
YOLOv3
特征提取网络
K-means++
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 施工场景下基于YOLOv3的安全帽佩戴状态检测
来源期刊 铁道科学与工程学报 学科
关键词 安全帽检测 YOLOv3 网络结构 损失函数
年,卷(期) 2021,(1) 所属期刊栏目 运输·物流·工程管理|Transportation·Logistics·Engineering Management
研究方向 页码范围 268-276
页数 9页 分类号 X947
字数 语种 中文
DOI 10.19713/j.cnki.43-1423/u.T20200284
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (38)
共引文献  (17)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(6)
  • 参考文献(1)
  • 二级参考文献(5)
2015(6)
  • 参考文献(1)
  • 二级参考文献(5)
2016(4)
  • 参考文献(0)
  • 二级参考文献(4)
2017(6)
  • 参考文献(2)
  • 二级参考文献(4)
2018(9)
  • 参考文献(2)
  • 二级参考文献(7)
2019(6)
  • 参考文献(4)
  • 二级参考文献(2)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
安全帽检测
YOLOv3
网络结构
损失函数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
铁道科学与工程学报
月刊
1672-7029
43-1423/U
大16开
长沙市韶山南路22号
42-59
1979
chi
出版文献量(篇)
4239
总下载数(次)
13
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导