基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对行人检测算法在交通场景下应用时的遮挡问题,提出一种结合双重注意力机制的遮挡感知行人检测算法.以RetinaNet作为基础框架,在回归和分类支路分别添加空间注意力和通道注意力子网络,增强网络对于行人可见区域的关注;同时引入行人可见边界框信息对传统的回归损失函数进行优化,使其能够随着遮挡程度自适应地调节预测框贡献的权重.在Caltech和CityPerson数据集上的实验结果表明:相较于RetinaNet等8种先进算法,该方法具有较好的鲁棒性和检测精度,尤其是严重遮挡情况下,该算法的对数平均漏检率仅为45.69%,小于其他算法12%以上;此外,该算法能够实现准实时检测,在Caltech和CityPerson上的检测速度分别为11.8帧/s和10.0帧/s.所提出的双重注意力机制和遮挡感知回归损失函数的检测方法具有可行性和有效性,对于遮挡行人的处理有显著优势.
推荐文章
基于卷积注意力机制和多损失联合的跨模态行人重识别
跨模态行人重识别
深度学习
卷积注意力机制
多损失联合
具有全局特征的空间注意力机制
卷积神经网络
空间注意力机制
全局特征
特征融合
目标分类
目标检测
基于多层次注意力机制一维DenseNet音频事件检测
音频事件检测
深度学习
DenseNet
多层次注意力机制
基于注意力机制的全景分割网络
全景分割
背景类实例重叠
三重态注意力机制
语义增强注意力机制
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 结合双重注意力机制的遮挡感知行人检测
来源期刊 哈尔滨工业大学学报 学科
关键词 行人检测 卷积神经网络 注意力机制 遮挡 实时
年,卷(期) 2021,(9) 所属期刊栏目
研究方向 页码范围 156-163
页数 8页 分类号 TP399
字数 语种 中文
DOI 10.11918/201904144
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (41)
共引文献  (158)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(5)
  • 参考文献(1)
  • 二级参考文献(4)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(3)
  • 参考文献(2)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(2)
  • 参考文献(0)
  • 二级参考文献(2)
2017(6)
  • 参考文献(1)
  • 二级参考文献(5)
2018(12)
  • 参考文献(3)
  • 二级参考文献(9)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
行人检测
卷积神经网络
注意力机制
遮挡
实时
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
哈尔滨工业大学学报
月刊
0367-6234
23-1235/T
大16开
哈尔滨市南岗区西大直街92号
14-67
1954
chi
出版文献量(篇)
7855
总下载数(次)
10
总被引数(次)
88544
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导