基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对交通标志图像易受复杂背景、光照、运动模糊等影响导致识别率低和识别速度慢的问题,提出了基于非对称双通道卷积神经网络的交通标志识别方法.通过不同网络结构的两通路提取丰富的特征信息,上层通路使用跃层连接提取的浅层局部特征和深层全局特征,与下层通路提取的精细特征在全连接层进行融合,并使用激活函数LReLUs代替脆弱的ReLU,提高准确率.将实验结果与其他算法进行比较,证明所提算法的识别率和识别速度均优于其他算法,具有一定的先进性和鲁棒性.
推荐文章
应用深层卷积神经网络的交通标志识别
交通标志
识别
卷积神经网络
深度学习
基于多尺度卷积神经网络的交通标志识别
模式识别系统
交通标志识别
多尺度卷积神经网络
SoftMax分类器
基于卷积神经网络的实景交通标志识别
卷积神经网络
深度学习
交通标志识别
训练
基于轻量型卷积神经网络的交通标志识别
卷积神经网络
交通标识
图像增强
深度可分离卷积
激活函数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于双通道卷积神经网络的交通标志识别算法
来源期刊 传感器与微系统 学科
关键词 卷积神经网络 交通标志识别 双通道卷积 特征融合
年,卷(期) 2021,(7) 所属期刊栏目 计算与测试|Calculation & Test
研究方向 页码范围 138-141
页数 4页 分类号 TP391.41
字数 语种 中文
DOI 10.13873/J.1000—9787(2021)07—0138—04
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (21)
共引文献  (14)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(6)
  • 参考文献(0)
  • 二级参考文献(6)
2017(5)
  • 参考文献(3)
  • 二级参考文献(2)
2018(1)
  • 参考文献(0)
  • 二级参考文献(1)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
交通标志识别
双通道卷积
特征融合
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
传感器与微系统
月刊
1000-9787
23-1537/TN
大16开
哈尔滨市南岗区一曼街29号
14-203
1982
chi
出版文献量(篇)
9750
总下载数(次)
43
总被引数(次)
66438
论文1v1指导