基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对视频目标跟踪中因特征点误匹配造成跟踪性能下降的问题,在融合二进制特征描述算法(ORB)与网格统计的视频跟踪方法(GMS)框架下,提出一种基于GMS与特征点误匹配剔除(FPME)的视频目标跟踪方法.利用ORB算法确保在视频序列中特征点匹配的实时性,采用"粗-精"两阶段的剔除方法,即先利用K-means算法快速粗略地剔除误差较大的特征点匹配关系,提高正确匹配对所占的比例,再利用分裂法精确剔除偏离程度较大的匹配对,提高目标特征点之间的匹配成功率.实验结果表明,在视频序列的跨帧匹配与连续跟踪实验中,该方法相对于GMS、ASLA、HDT等当前主流算法在匹配精度、速度等评价指标上都能得到较好的结果.
推荐文章
基于目标跟踪与深度学习的视频火焰识别方法
火焰检测
图像处理
卷积神经网络
多目标跟踪
基于粒子滤波与局部搜索的视频目标跟踪
目标跟踪
粒子滤波
局部搜索
随机爬山法
基于视频图像的运动目标识别与跟踪方法研究
图像处理
背景提取
边缘检测
目标识别
基于改进高斯混合模型的体育视频运动目标检测与跟踪
高斯混合模型
体育视频
运动目标
目标检测
目标跟踪
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于GMS与FPME的视频目标跟踪方法
来源期刊 计算机工程 学科
关键词 视频目标跟踪 特征点 误匹配 K-means算法 分裂法
年,卷(期) 2021,(7) 所属期刊栏目 图形图像处理|Graphics and Image Processing
研究方向 页码范围 226-231
页数 6页 分类号 TN919
字数 语种 中文
DOI 10.19678/j.issn.1000-3428.0058428
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (38)
共引文献  (16)
参考文献  (16)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(6)
  • 参考文献(2)
  • 二级参考文献(4)
2012(4)
  • 参考文献(1)
  • 二级参考文献(3)
2013(4)
  • 参考文献(2)
  • 二级参考文献(2)
2014(5)
  • 参考文献(2)
  • 二级参考文献(3)
2015(7)
  • 参考文献(2)
  • 二级参考文献(5)
2016(6)
  • 参考文献(2)
  • 二级参考文献(4)
2017(2)
  • 参考文献(1)
  • 二级参考文献(1)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
视频目标跟踪
特征点
误匹配
K-means算法
分裂法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程
月刊
1000-3428
31-1289/TP
大16开
上海市桂林路418号
4-310
1975
chi
出版文献量(篇)
31987
总下载数(次)
53
论文1v1指导